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A Ring with Left Identities anb Right
Inverses Is a Skew Field"
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It s well known 77 that a semigroup in which zvery elernent has a left
identity and right inverses need not be a group. In thi; ncte == prove that if
thé semigroup is the multiplicative semigroup of a ring, then it is a group. In
fact, we have the following theorem.

Theorem Let R be a ring. Let E={ecR|er=r, v r¢R} . If E is nonempty
and for each reR, r=(. there is at least one element r'eR such that rr'¢ E, then
R is a skew field.

Proof It is easily seen that 0 § E except R={ (0 }. If there are two elements
e, e,cE, then e;r=r; e,;r=r for all reR, Hence ejr—e,r=0, (e, - e,)r=0,for all
reR. Suppose e, — e,7-0, then there is at least one element k¢R such that (e, -
e,)k€¢E, a contradiction to the fact that (e, —e,)r=0 for al' reR, therefore e, - e,
=0,e=¢,

Now we prove that a right inverseé in R is also a Jeft inverse. Let R, r=+
0. there is at least one zlement r'eR suéh that rr'=e. Hence (rr')r=er, r(r'r) =
r, r'r# (. there is at least one element A¢R such that (¥’'r)h=e. From r(r'r)=r
we know r{r(rr)i=r'r, (r'rn(rry=r'r. Multiplying the last equality from the
right by A, we have (*'re=e, [(r'r)—-ele=0. If (¥'r) — e#0, there is at least
one element r¢R such that ((r'r) — elt=e. Multiplying ((r'r) ~ e)e=0 from the
right by ¢, we have e¢= {0, impossible, Hence r'r-e=0, r'r=e.

It is well known ([4,p4]) that a semigroup in which every element has a
left indentity and left inverses is a group. Therefore RN\{ 0} is a group, R is
a skew field.
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