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|,Introd|iction. The present paper has been motivated by the desire to find
all polynomial solutions of the convolution type differential -difference equation
n-1
(1.1) D.g,(x) = Y g,(x)g,;(x), n>2, - i
i=]
where g,(x) is assumed to be a constant . This problem arose in work by one of
the authors (Kerr) with a differential equation arising in a coal research project
[11]. We shall first solve this equation and then consider some more general
relations suggested by (1.1). Relation (1.1) may be rewritten in the suggestive
form

(1.2) D.g,(x)= 3 g(x)g;(x),
. i+j=n
Vi, jin
where the summation is over all integer solutions i,j satisfying i+ j=n and such
that 1<i<n, 1<j<n. The reason this is suggestive is that in Section 3 we ana-

lyze the equation
(1.3) DU, (x)= 3 U X))y, x)

i+j=n
0<<i.j<n
and in Section 4 the equation

(1.4 DX, (x)= ZX,.(x)X,(X)X,‘(x),
i+j+k=n
0iy k< n
giving solutions under some simple hypotheses .
We also extend our consideration of (1.3) and (1.4) to equations involving

higher derivatives. If we impose equation (1.3) together with the equation

(1.5) DU, (x)= ki X U, U (x)U,; (x)
Tyt =e ! 2 :
0<F,<n

we obtain a general solution that includes the case where U,(x) is nothing but the

. . . -1 .
coefficient of ¢" in the expansion of the generating series (c—rx) for a suitable
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constant ¢ . We also determine a linear recurrence relation for the general U,(x)
polynomials .,
We can extend our consideration of (1,4) by imposing the higher derivative

equation
(1.6) DEX  (x) = (2k— 1)1} > X (X)X (x)oe X, (X)
Jytdpter i =0 ! : et
0<d,5n

where the ‘double factorial’ symbol means [- 3+ 5+ (2k - 1). We find that the poly
nomials X,(x) are now the coefficients of ¢" in the series expansion of the gener -
rating function (c - 2tx)_l/2. Among the special solutions we then note that the
choice c=1+1¢* gives X, (x) =P (x), the well-known Legendre polynomials.

The fact that the Legendre polynomials satisfy (1.4 was found by Catalan

[273, [3]. Djokovic [ 4] found (1.6) true for Legendre polynomials but pro

ved it only for the cases k=1,2,3.Boas [ 1] then gave a simple proof of (1.6)
for Legendre polynomials, Scott [17] found a related result for Tchebycheff poly
nomials of the second kind . Popov [12] also proved that (1.6) holds for Legen
dre polynomials. Gould [ 7 J found still another related identity for a species of
generalized Humbert polynomials. In [ 7 ] the above history is recounted. We use
the method [ 9 ] of the algebra of formal power series. In Section 5 below we -
show how to find nonlinear recurrences for Bernoulli numbers.

2 . Solution of (i.l) We introduce the generating function G (x,r) defined by

2.1) G (x,t)=3 g,0)1",
n=1

Then D.G(x,t)= Y.'D, g (x)=tD,g,(x)+ L t"D,g,(x)
n=1

n=2

o=} n-1 [es)
=rgi(x)+ 1" Y g (x)g,  (x) =tgl(x) + {3t"g,(x) }Z:Ig,’(x) +GH(x, 1),
n=2 k=1 : n=

so that the use of our formal power series yvields the differential equation

(2.2) DG (x,1)=1tg[(x)+G*(x,1).
This equation is a special form of the general Riccati equation
(2.3 Y'=a(x)yr+B(x)y+y(x).

What we need to know about (2.3) is to be found in Kamke [10], Murphy [13]
and Watson [18].
We consider first the case where g,(x) is constant so that g/(x) = 0, Then we

can solve (2,2) at once and get

1

(2.4) G(x,1) = where ¢ is a constant ,

A clever way to make use of the constant ¢ is to proceed as follows. Let
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- (2.5) C)=G0,1)= S c"
n=1

and then by (2.4) we have G(0,f) =1/c and C =g,(x).

. From this it follows that the solution of (2.2) when g,(x)=c,, a constant, is
» given by
_ Cc)
, (2.6) G (x, 1) ==

in terms of a formal power series (2,5) where ¢, 'is an arbitrary sequence of
real numbers, If we choose a function C(r) we can then expand G (x,t) ina
formal power series and find g,(x) as the coefficient of ¢"

But let us find g,(x) directly in terms of the c,s as follows, We have

G(x,t)=C@){1-xC()}" C(t)):x {C))r= Z:x {C)}" = zx"{fcr ki

-~
=Y x " Z C ;€ jsC Zt le 2 cjereeg
k=0 n=k+l jo+jyreetj, =0 Jytee i, =n Ja 1
1<j,<n 1<j,<n
whence, recalling (2.1) we have that the g’s are polynomials and in fact
n-1
2.7) £, = 3 b, x*
where the coefficients b, are determined by
(2.8 b",;‘:j.h..;jb —S’lc "'ij
1</, <n
Below we give a short table of the first few values of the b’s.
Kk
- N 0 1 2 3 4
1 [oN 0 0 0 0
2 <, cf 0 0 0
. 3 cs 2¢,c, c 0 0
2 2 4
- 4 Ca 2¢,c;t ¢,y 36, < 0
5 Cs 2¢i64t 2004 scre, + 3,6 4c)62 <
“ Let us examine a few simple examples of the applications of the formulas.
Example |. Let ¢,=a for all i>>1, Then
b'n,’kz 2 ak+1___ak+l 2 1=(n;1)ak+
jl+".+jk¢l=n j|+°"+jk<|:"
1</, <n 1<), <n .
by a known result (also given by Catalan) noted in [6.p.242]. Hence we find
- nel . 4
(2.9) g.x) =5 (" hatx =a(1 +ax)"
k=0

This may be checked in another way. Using (2.5) we getC(t)zat(l—t)—l
so that
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Gx,1) = (c-x) " =at(i-(1+ax)t)* =a ¥ (g +an)" 1" |
n=1

so that again (and more easily) we find g, (x)=a(]+c)""
Example 2. Let ¢,=; for all i>1, The reader may readily check the deta-
ils that here we shall have

(2.10) £:(x) = Zf(z',;I’l‘ ‘

The first five of these g’s are as follows;
£1=1, £,=2+x, g=3+4x+x’,
g,=4+10x+6x +x’ , g5=5+20x +21x"+8x +x*
If we verify (2.10) by using the array of c¢’s we make use of the easy to prove
known identity

(2.1D) . Z jljz“‘jk:(n;;ck_‘il) . (1<j,.<n)
j|+j2+---+jk=n
1< j<n

It is also not difficult to write (2,10) in closed form because in fact

_b"
(2.12) Zl(zz:f k a—a——:b———, where ab=1, a+b=x+2,

In (2,12) the a and 4 numbers are the distint roots of a quadratic equation .
Relation (2,12)is akin in fact to the expansion for Fibonacci numbers

. n-1-k a"-b"
(2.13) Fn:o'—;kg(nz—l)/z( Il‘ ) :T-—b—
where now a and b are roots of the quadratic equation x’—x-1 = 0. These roots
are, of course, (1 +/5)/2 and the expression (a"-5b")/(a —-b) is the so-called
Binet formula for Fibonacci numbers.
We return to the general situation and prove next that the g,/s which satisfy
relation (1.1) with g,(x) =c,=constant also satisfy the linear recurrence relation

n-1
(2.14) g.(x)=c,*x 3} c, 8,(x), n>2,
71

Proof . From (2.6)
Gx,t)=C)+xCu)G(x,t).

Substituting from (2.1) and (2.5) we get
Secor= Sesex Garr) (Gawrt )= Sestex B Heo o,
n=1 n=1 n=1 =1 n=1 n=32 j=1

whence by coefficient comparison we have evidently proved (2.14).
Relation (2.14) allows an independent way of generating as many g’s as we
need from those we already have found in any given case.
Remark , It is clear by induction, with g, (x)=constant, that (2.2) yields
(2.15) DG (x, 1) =k1 G*"(x,1).
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But by (2.5) and (2.1)

o0

GkH(x, £ = {fg,,('x)t" }kﬂ - Z I'fi Z gj|(x)...gjk (x)
ooy +1

n=k+] Jyteetj, =0

1<j, <n
whence we have proved the interesting extension of (1.1)
(2.16) Dig,(x)=ki 3 g;(x)wg; (x), k>0.
Jyteeti=n ! k+1
1<j,<n

- Of course, we have derived all under the assumption &,(x) =constant , The
situation for g,(x) nonconstant is, of course, subject to what follows from the
Riccati equation (2,2).

We conclude this section of our paper with.a derivation of another recurre -
nce -~ relation which is as follows :

(2.17) :Z_:lkk"_,‘gk(x) = "Z_'lkc,‘g,,’_k(x),
=1 k=1
where
(2.18) : ky=S0ce, , with k=0,
j=1 :

Proof. From (2.6) it is easy to obtain the partial differential equation
(2.19) C*t)DG (x,1)=C'(t)D.G (x, 1) .
In this make the indicated substitutions using (2.1) and (2.5). The result is
that

it"k"" int"_'g,,('x) = fnt"”lc,,- fg,’(x)t" ,
n=2 n=1 n=1 r=1
and simplifying and equating coefficients of powers of + we find (2.17).
This is the simplest linear recurrence we have found between the g’s and
the derivatives of the g's,
3. Equation (1.3) and its extension to (1.5) .Proceeding as we did with

(1.1) we introduce the generating function

(3.1) Hx, 1) = 300U x) .
n=0

H= % 1" L UU,w = DU, (x)=17D, St"U,x) =t D {H (x, 1) ~Uy(x)]}
n=90 i+j=n n=0 n=i
0, j<n
whence our Riccati type differential equation now reads
(3.2) D.H (x,t)=tH*(x, 1) +DUy(x) .

In the case that Uy(x) is constant, this is readily solved to give

1 .
= —_— tant c.
(3.3) H(x,t) =—= for a suitable constan

tx °’

Proceeding as we did in Section 2, we let
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(3.4) HQ.)=CQ) = Zc',.t":%, and we can then write (3.3)
n=9
in the form
’ _Ccw)
3.5) Hx,1)= 1—-1xC (1)
This then yields
Hx,t)=C(){1-1xC(1)) " = lgﬂ:"x"{cm}“‘ = :oz"x" {ﬁoc,t" Yo
= i[kxkﬁt" Z Cj."cj = it"xk f["tk Z cj“'cj
k=0 n=¢ Jyteetj, =0 1 M k=0 n=k Jy¥e ¥, =n-k 1 ka1
0<i, <n
MDD
= t X C .**o(C .
n=9 k=90 j‘+...+l‘kﬂ=n—k Ji th'
whence we have proved that
(3.6) Utx)= Y x* T cjc e
e Ry T SR LI B
0<j,<n-k

A very simple special case is when c¢,=1 for all i>>0, Then it is easy to see
that U, (x)=(1+x)" .
The linear recurrence relation analogous to (2.14) is now

3.7) U,,(x) =C,,+',+xk):cn_kUk(x) for n>>0
=0

which is readily proved by writing (3.4) in the form

H(x,t)=C@)+txC (tYH (x,1)
and making the indicated substitutions from (3.1) and (3.4), then expanding
and comparing coefficients .

In what we have done so far we considered the case U,(x) constant. Dis-
card this assumption. Let us assume only that we have (1.3) together with its
implication (3,2). If we impose the additional hypothesis (1.5) we will prove
the remarkable result that then DU, (x) = for every integer k>>1,This will
make U, (x) aiutomatically a polynomial of degree n in x and force D H (x,t) =
rfaH ™ (x,t). As a consequence the functions that satisfy both (1.3) and (1,5)
are rather special .

We first prove that

k._

(3.8) DH (x, 1) =1kt H* " (x, 1) + S¢'D'U.(x), k>>0.
n=9

This is vacuously true for k =(, By assuming (3.2) we find

S DA, x) =kt St % U, .y U (x) =kt (S 00,00 ¥ =k H (1)
n=0 = ! ket n=0

n=0 jl + oas +jku=”
0<j, <n
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Replace n by n-k in the left-hand sum and we have then
RV H " (xy 1) = S01"DAU6x) = 3 1"DAU ¢x) - 2‘: DU ¢x)
n=k n=0

which says what we gave as (3.8).

We may now state our intended result in the following form

Theorem, The functions U, (x), n=0,1,- arising in relation (3.8) are poly-
nomials in x of degree <n.

Proof , We will show first that

(3.9) zt "D*U.(x)=0 for all k>1.

Lemma. If (3.8) holds true for any k>1,where x and ¢ are not constants,
and H (x,t) is not identically constant for all ¢, then
(3.10) DXH (x,t) =t*k) H*"(x, t) for all k>1,
Proof. We prove this by induction on k. To begin with, when k=1 in
(3.8) we obtain (3.2) and when k=2 we get ' '
(3.11) D*H (x,t) =2t*H*(x, 1) + DU (x) +tDU, (x) .
Then, differentiating (3. 2) we have
D H (x,1) =2tH (x,t)DH (x, 1) + D Uy (x)
and substituting - with (3.2) we get
(3.12) DXH (x,t) =2t’H?(x, 1) + 2tH (x, 1 )DUy(x) + DU (x) .
Now subtract (3.11) from (3,12) and we get the relation
2tH (x, t)D Uy (x) =tD*U,(x)
holding for all ¢t so
(3.13) 2H (x; t)DUy(x) = DU, (x) .
Since ¢ is not constant and H (x,t) is not identically constant for all ¢+ we may
assume there exist 7, and ¢, such that H (x,t,)#H(x,t,). Then by (3.13) we
know that 2H (x,1,)D Uy (x) =D>U,(x) and 2H (x, t;) DUy(x) =D2U,(x) from which
we get that 2D U (x){H (x,t,) —~ H(x,t,)} =0, and this, of course, implies that
DUy(x)=0. Then (3.13) tells us that DU, (x) =0
T he result that DU (x)=0. means next that (3.2) reduces to
(3.14) D_H (x,t) =tH*x, t)
which establishes (3.10) when k=1,
Now, suppose that (3.10) holds for k =r (some natural number) . Then
D'H (x,t)=t"rH " (x, t)
Differentiating this yields D’ TH (x,t) =t"(r+11H(x, t)D,H (x, t), so that by (3.14)
we have D."H (x,t)=t"""(r + 1)1 H™"*(x, t) . We have therefore shown that (3.10)
holds for k =r+1,By the principle of mathematical induction we have shown
then that (3.10) is valid for all k>1.Q.E.D.
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Combining this with (73.8) we have therefore established (3.9). However,
note that (3.9) is a polynomial equation in 7 holding for an infinite number of
t’s, but this contradicts the Fundamental Theorem of Algebra since (3,9) could
hold for no more than k — 1 values of r, Hence the coefficients must vanish iden
tically so that DU _ (x)=0 for every k>1.Thus our theorem is proved.

The implication of this result is that if we impose both (1,3) and (1.5) then
we obtain simple polynomials for U,(x). These are given by (3.6) in terms of
the constants ¢, or we can use the previously obtained generating function (3.3)
or (3.5).

The first few U’s are as follows:

Uyfx)=cy , Ux)=c,+cix, Uyx)=c,+2coc,x +eogx’
U,(x) =c,+ (2c,c, e x + 3c§c,x2+c(':x3 ,
Ux) =c,+ (2cc3+2c,c,)x + (3c§c2+ ?,(:oclz)x2 + 4(:3«:lx3 + cz,x4 .
They, of course, are formed just as the g,’s were in relation (2.8).Denote by
1 each subscript in the tables of b, following (2,8) and we obtain the above U’s.
4 .Equation (1.4) and its extension to (1.6). First of all, if we set up the

generating function
(4.1) K(x,1)= 31X, (x)
n=9

and impose (1.4), then there is no difficulty in showing that the generating fun -
ction must satisfy the equation
(4.2) DK (x,t) =tK*(x, 1)+ D X(x),
which is an Abel type differential equation. The general Abel equation [10],
[13] has the form )
(4.3) LY =a0y By Iy () y+(x) .
In case we suppose X,(x) to be constant, then equation (4.2) has the evi-

dent solution

1 .
(4.4) K(x,t) :_\/-Z:_T?_ , for a suitable constant c.
If w= choose
(4.5) c=1+1°

then we have

(4.6) KGe,t)= (1-gxt+1))" = Y3 1°P x),
n=9

so that X (x) =P, (x), the standard Legendre polynomials .
Note however that for any constant ¢ we have
D, (c- 2tx)_1/2:t{(c~2!x)~”2}3
so that Legendre polynomials are indeed a very special case .
Mctivated by knowledge of (1.g) being true for Legendre polynomials, let
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us next carry through a proof of a theorem parallel to what we did in the pre-
vious section, by imposing both (1.4) and (1.6).
In the same manner that we found (3.8) it is a routine calculation to derive
k-1
4.7 DK (x, 1) = (2k—- DK™ (x, 1)+ 32 ¢"DEX (),
n=0
out of (1.6) and (4.1) holding for all k>1,so it includes (1.4) in fact. Relation
(4.7) is analogous to (3.8). We are now in the ‘position to prove the
Theorem . The functions X,(x) arising in relation (4.7) are polynomials in
x of degree at most n .
Proof . Just as we proved (3.9), we begin by showing that
k-1
(4.8) STt"DEX (x)=0 for all k>1,
n=9
To get this we need the
Lemma. If (4.8) holds for non-constant x,t and K (x, ) is not identically
constant for all ¢, then

(4.9 DiK (x,t)= (2k— D11t"K™* " (x, t)  for all k>
Proof. We use induction on k. To begin w1th when k=1 (4.7)has the form
(4.10) DK—IK +D Xy(x),
and when k=2 we have
(4.11) | DK = 3°K*+ D2X(x) + 1D2X, (x) .

Differentiating (4.10) once more yields DjK:?,tKZDXK+DfX0(x),
whereby upon substitution of (4,10) we get
(4.12) DIK = 31°K° + 3tK’D X, (x) + D} X,(x) .
Now by combmmg (4.11) and (4,12) we get the relation
3tK’D X (x) =tDIX (x),
which holds for all non-constant + . Hence
(4.13) 3K’D X, (x) =D2X,(x) .
Again we may suppose that there exist different 7, r, such that K (x, 7,) #K (x,
t,), and in fact Kz(x, t,)#=K*(x,t,). Therefore we have both 3K2(x,t,)‘DxX0 (x)
=D!X,(x) and 3K%(x, 1,)D X(x)=D}X,(x), which combine to give
3D X (x){K*(x, 1))~ KXx,1,)} =0
which entails then that D X (x)= (0. Putting this back into (4,13) then gives us
2X {(x)=0. As a matter of fact we have shown that (4,10) becomes just D K=
tK’ so that (4.9) is valid for k=1,
Suppose then that (4.9) is true for k=r (some natural number). Then
DK =(2r-D11t'K*™ and by differentiation of this we get
DMK = (2r- D11t (2r+ DKYDK = (2r + DUECKT 1K = (2r + D11 K,
so the induction goes through and we have proved that (4.9) is true for all £k >1,
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The remainder of our proof of our theorem is parallel to what we did
in Section 3; for relation (4.8) then implies that DX, (x) =0 for every k>1.

5. Recurrences for Bernoulli numbers. In Section 2 we concentrated on the
case where g{(x)=(0.We now consider the case when g{(x) =g, a non-zero cons-
tant ., In this case the Riccati equation [13, p.229]

(5.1) y'=a+by® , a0
has two solutions in terms of an arbitrary constant c.
(5.2) ry=atan(C+rx), r=Jab , ab>(
or
(5.3) sy =atanh(C +sx), s=J/-ab , ab<0.
We will illustrate by using (5,2))to solve
(5.4) DG (x,1)=tg+G (x,1), tg>0.
We find then that
(5.5) G(x,l):t”zg'/z!an(C+xtl/2g”2).
Consider the case when C=0, We need the well-known expansion
(5.6) tanz = fl (- f;nl), 22" - 1)B,,"
where the B’s are the Bernoulli numbers defined by
o
(5.7) o _1 = ng;,— p

An account of formulas and history for the Bernoulli numbers may be found in
[81, (141, and [16] .
The result is that when C =

t" n_2n-1,2n

— = _ n-\_____‘ 2,,_ .
(5.8) G(x,t>—”Z:,‘l( 1) Gmr £ 2°(2"-1)B,,

as the formal power series for G. Thus we find that

a1 227071
(2n )

(5.9) g,(x)=(-1) g"B, x>, n>1, g+o.

The first few Bernoulli numbers are: B~1, B,= -1/2,B,=1/6, B,= -1/30,
=1/42, By= -1/30, B,,=5/66, B,,= —691/2730, B,,=7/6, By=Bs=+-+=0. Thus
the first few g’s are:

(5.10) : gx)=gx, gz(x):—-l—gzx3, (x)—lgx ,
3 15
_ _ 62 __ 1382 e u
8a0) =gire’s g0 = pdg’x" s g =l

Since the g’s satisfy the original equation (1,1), then we have evidently

shown that the Bernoulli numbers satisty the nonlinear recurrence relation
n-1 .
(5.11) :;1(32)(2“— D@ - 1)B, B, = — (2n~1)(2" - 1)B,,, for n>2,

)
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f" which may be contrasted with the more well-known recurrence
n-1 2"
(5.12) kZ (o) BuBynne= — (2n+ 1)B,,5 n>2.
=1
, Multiplying out the powers of 2 and combining (5.11) with (5,12) we get next
n-1
(5.13) 1<Z=:1(§Z)ZZszszn—'zk: - (2n+2')B,,; n>2.

Actually the Bernoulli numbers satisfy linear recurrences, for example the
well-known relation

(5.14) ,?;O(Z)Bk:Bn; n>0,but n#£l,

Relation (5.11) is given by Saalschiitz [16, p.17, No. XII] and Nielsen [14,
p.67, No.15]. Further, relation (5,12) is given by Saalschiitz (p.16, No.XI) and
Nielsen (p.66, No.13). Finally, (5.13) is given by Nielsen (p.67, No.21). Saals-
chiitz traces these formulas back to Euler in fact.
We think it interesting that our technique leads to these nonlinear recurrences .
+ Many other nonlinear recurrences may be found from the expansions we have
studied here.
We remark that pursuit of the hyperbolic tangent solution (5.3) yields the
same Bernoulli number recurrences .

Because of the well-known formula

2n-1_2n
1 2 4

(2n)1 B

connecting Bernoulli numbers and the Riemann Zeta function evaluated at even

(5.15) §@2n)=(-1) n>i,

integers, then (5.11), (5.12), (5.13) may be restated as recurrences for this
function

Rl gk 2n-2k 1 2n
(5.16) kZ(z -1)(2 ~1);(2k)£(2n—2k>=(n—7)(2 -1)¢(2n), n>2,
=1 s i

n—1 .
(5.17) Lok an-2k) = (n+_;—>g(zn>, n>2,
and » -
(5.18) S ¥ 2k ¢ (an-2k) = (n+ 2
k=1

2n

)¢ (2n), n>2,

Certainly (5.17) is the simplest and most well-known .
6. A further generalization. By the methods we have outlined we can study
polynomials that satisfy
~ ‘ (6.1) DY, qoni(x) = f(k) X le(x)sz(x)---chm(x)
| gt -
by defining the generating function

(6.2) Wix, 1) = 3 t"Y,(x)
n=0
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which yields the differential equation

a+bk-1

(6.3) DIW (x, 1) = fU) ™™ W (x, 1) + 3 t"DYY, (x),
n=g
so that we have to deal in general with the nonlinear differential equation of -
form
(6.4) y ©) =4 )y M x)+B(x).

Whenevar we are lucky enough to be able to sol've this exactly we can gene-
rate interesting solutions to (g.1).

To illustrate the method we mention first k=1, a=2, b=0, c=2, d=0 and

f(k)=1, Then we have to solve

(6.5) y(x) =t ) +Y(x) + 1Y {(x) .

This equation is like (2.2). If we let Y/(x) =0 and Y (x) =constant#(0 we could
solve the equation as we did (5.1). Again we are solving Riccati equations.
The reader can work out the details using the information here and in>Kamke
{101 or Murphy [13].

We will next look at the case where k=2, c+dk>1.In general this is a
difficult case because many of the examples lead to solutions involving the Wei-
erstrass elliptic function ¢(z), which occurs often among solutions to nonlinear »
second order differential equations. Referring to Kamke [10, pp.542-544] we do
not find many equations with strikingly simple solutions . For example, the equa-

tion
(6.6) y’=y?
may be solved in the form
(6.7) y=4( Jx_s_—cz; 0,c¢,), ¢, and ¢, arbitrary constants,

where ¢(z; g,, g,) denotes the well-known Weierstrass elliptic function with inva-
riants g, and g, .
The simple equation

(6.8) y'=6y’

has the solution

(6.9) y= 4(x+c,;50,c).
The equation .

(6.10) y'=eyi+k

actually characterizes the so-called Painlevé transcendental function.
There is one equation
(6.11) y'=Ay’
which has among its solutions

(6.12) y= —j—x—ié, C =arbitrary constant,
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- and we will examine some applications of this to obtain interesting polynomial
as well as non-polynomial solutions to the appropriate specialization of (6.3).
Consider the case k=2, a= 0,b=0,c=3,d=0,and f(k)=1, Then we have A

(6.13) DY, (x)= X Y, (0)Y,)Y(x),
i+j+k=n
Og-i'?j,kgn
' (6.14) W(x,1)=31"Y,(x),
n=90
(6.15) DW (x,t) =W’(x, 1),
so that we use (6.12) with A=1. Among the solutions of (6,15) then, we have
_J2
(6.16) Wi(x,t) Y ol
- As we did in Section 2,we set W (0,1)=C(t)=/2 /C and C (1) = ic,,t" . We
n =
can then write (6.16) in the alternative form
J2C ()
(6.17) Wix,t)=—m— ,
6 * 72 +xC (1)

so that for suitable C(z) or sequence ¢, we may Wwrite out interesting functions
satisfying (6.13) -
Example 1, With C= -1/t we find Y, =0, Y, (x)= - /2x"
Example 2. With C(t)=/2 (1-¢)" we find W (x,t)=/2 (x+1-1)
Y,tx)=J2 Q+x)"", n>o0.
Example 3, With C=1-+¢> we find Y, ,(x)=0,Y,,(x)=J2 0 +x)" " for
n=>0.
- Remark . A study of the identities resulting from Equations (6.6) and (6.8)

which involve the Weierstrass function will be left to a separate paper.

1 on>1,

' so that
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