Journal of Mathematical Research and Exposition Vol.9, No.2 May, 1989.

A Note on Hamiltonian Grids*

Sun Liang (孙良)

(Department of Applied Mathematics Beijing Institute of Technology)

Abstract

A complete grid $G_{m,n}$ is the cartesian product of two paths P_m and P_n . In this paper, it is proved that a class of complete grids with two vertices removed are hamiltonian. This result settles a conjecture of S.M. Hedetniemi, S.T. Hede tniemi and P.J. Slater in positive.

1. Introduction

Let $m \ge 2$ and $n \ge 2$ be two integers. The following concepts were defined in [1]: A complete grid $G_{m,n}$ is a graph having mn vertices which are connected to form a rectangular lattice in the plane, i.e., all edges of $G_{m,n}$ connect vertices along horizontal or vertical lines. A grid is a subgraph of a complete grid. Obviously a complete grid $G_{m,n}$ is isomorphic to the cartesian product of two paths p_m and p_n .

Let G_{mn} be a complete grid with $V(G_{m,n}) = \{V_{i,j} | 1 \le i \le m, 1 \le j \le n \}$. Let $V_1 = \{V_{i,j} | i+j \text{ is even } \}$, $V_2 = \{V_{i,j} | i+j \text{ is odd } \}$.

In this paper, we shall disucss the hamiltonian property of grids.

Theorem A([2]): $G_{m,n}$ is hamiltonian iff mn is even.

Theorem B([1]): $G_{2r+1,2s+1} - \{v\}$ is hamiltonian iff $v \in V_1$.

Theorem C([1]): Let $G_{2r,2s}$ be a complete grid where $r,s \ge 2$, $S = \{u,v\}$ where $u \in V_1$, $v \in V_2$. Then $G_{2r,2s} - S$ is hamiltonian iff $G_{2r,2s} - S$ is 2-connected.

Theorem D([1]): Let $m \ge 4$ be any integer, $S = \{u, v\}$ where $u \in V_1$, $v \in V_2$. The $G_{m,4} - S$ is hamiltonian iff $G_{m,4} - S$ is 2-connected.

Theorem E([1]): Let $n \ge 4$ be even, $S = \{u, v\}$ where $u \in V_1$, and $v \in V_2$. Then $G_{7,n} = S$ is hamiltonian iff $G_{7,n} = S$ is 2-connected.

When m=3 or 5,2-connectivity of $G_{m,n}=\{u,v\}$ can not imply that $G_{m,n}=\{u,v\}$ is hamiltonian, where $n \ge 6$ is even, $u \in V_1$ and $v \in V_2$. In these two cases, S. M. Hedetniemi and S. T. Hedetniemi and P. J. Slater ([1]) settled the problem which grids $G_{m,n}=\{u,v\}$ are hamiltonian. In general case, they posed the follo-

^{*} Received. May, 25, 1987.

wing conjecture.

Conjecture I([1]): Let r,s be two positive integers, $r \ge 3$, $u \in V_1$ and $v \in V_2$. Then every 2-connected grid $G_{2r+1,2s} - \{u,v\}$ is hamiltonian.

We shall prove this conjecture in next section.

2. Main Result

In this section, Conjecture 1 is proved.

Theorem: Let m > 7 be odd, n > 4 even and $G_{m,n}$ a complete grid. If $u \in V_1$, $v \in V_2$, and $G_{m,n} = \{u, v\}$ is 2-connected, then $G_{m,n} = \{u, v\}$ is hamiltonian.

Proof: Let $S = \{u, v\}$, where $u \in V_1$, $v \in V_2$, and $G_{m,n} = S$ 2-connected. Denote m = 2r + 1, n = 2s. We prove the theorem by induction on r + s. If r = 3 or s = 2, then the theorem is valid by Theorem E and Theorem D. Thus we assume that r + s > 5, and r > 3, s > 2.

Let $J_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,n}\}$, $L_j = \{v_{1,j}, v_{2,j}, \dots, v_{m,j}\}$, $1 \le i \le m$, $1 \le j \le n$. If $S \cap (J_{m-2} \cup J_{m-1} \cup J_m \cup \{v_{m-3,1}, v_{m-3,n}\}) = \phi$, then the 2-connectivity of $G_{m,n} - S$ implies that $G_{m,n} - (S \cup J_{m-1} \cup J_m)$ is 2-connected. The latter is hamiltonian by the induction hypothesis, so does the former. Therefore, we can assume that $S \cap (J_1 \cup J_2 \cup J_3 \cup \{v_{4,1}, v_{4,n}\}) \neq \phi \neq S \cap (J_{m-2} \cup J_{m-1} \cup J_m \cup \{v_{m-3,1}, v_{m-3,n}\})$, and $S \cap (L_1 \cup L_2 \cup L_3 \cup \{v_{1,4}, v_{m,4}\}) \neq \phi \neq S \cap (L_{n-2} \cup L_{n-1} \cup L_n \cup \{v_{1,n-3}, v_{mn-3}\})$. Since |S| = 2, we can obtain that either $S \subset X_1 \cup X_2$ or $S \subset Y_1 \cup Y_2$, where $X_1 = \{v_{1,1}, v_{1,3}, v_{2,2}, v_{2,3}, v_{3,1}, v_{3,2}, v_{3,3}, v_{4,1}, v_{1,4}\}$, $X_2 = \{v_{m-3,n}, v_{m-2,n-2}, v_{m-2,n-1}, v_{m-2,n}, v_{m-1,n-2}, v_{m-1,n-1}, v_{m,n-3}, v_{m,n-2}, v_{m,n}\}$, $Y_1 = \{v_{m-3,1}, v_{m-2,1}, v_{m-2,2}, v_{m-2,3}, v_{m-1,2}, v_{m-1,3}, v_{m,1}, v_{m,3}, v_{m,4}\}$, $Y_2 = \{v_{1,n-3}, v_{1,n-2}, v_{1,n}, v_{2,n-2}, v_{2,n}, v_{3,n-2}, v_{3,n-1}, v_{3,n}, v_{4,n}\}$. Without loss of generality, we suppose that $S \subset X_1 \cup X_2$, and $S \cap X_1 \neq \phi \neq S \cap X_2$.

If $v = v_{m-2, n}$, then $G_{m, n} = (S \cup J_{m-1} \cup J_m)$ is 2-connected. Thus $G_{m, n} = (S \cup J_{m-1} \cup J_m)$ is hamiltonian, so does $G_{m, n} = S$. Similarly, we can get that $G_{m, n} = S$ is hamiltonian if $S \cap \{v_{1, 3}, v_{3, 1}, v_{3, 3}, v_{m-2, n-2}, v_{m, n-2}\} \neq \phi$.

If $u \in \{v_{1,1}, v_{2,2}\} \subset V_1$, then $v \in \{v_{m-1, n-1}, v_{m, n}\} \subset V_2$. Since both $\langle L_1 \cup L_2 \cup L_3 \rangle - \{u\}$ and $\langle L_4 \cup \cdots \cup L_n \rangle - \{v\}$ are hamilionian, $G_{m,n} - S$ is hamiltonian.

Let $v \in \{v_{1,4}, v_{2,3}, v_{3,2}, v_{4,1}\} \subset V_2$, $u \in \{v_{m-3,n}, v_{m-2,n-1}, v_{m-1,n-2}, v_{m,n-3}\} \subset V_1$. There are 16 cases to be considered.

$$S_{1} = \{v_{1,4}v_{m-3,n}\}, \qquad S_{2} = \{v_{1,4}, v_{m-2,n-1}\}, \\ S_{3} = \{v_{1,4}, v_{m-1,n-2}\}, \qquad S_{4} = \{v_{1,4}, v_{m,n-3}\}, \\ S_{5} = \{v_{2,3}, v_{m-3,n}\}, \qquad S_{6} = \{v_{2,3}, v_{m-2,n-1}\}, \\ S_{7} = \{v_{2,3}, v_{m-1,n-2}\}, \qquad S_{8} = \{v_{2,3}, v_{m,n-3}\}, \\ S_{9} = \{v_{3,2}, v_{m-3,n}\}, \qquad S_{10} = \{v_{3,2}, v_{m-2,n-1}\}, \\ S_{11} = \{v_{3,2}, v_{m-1,n-2}\}, \qquad S_{12} = \{v_{3,2}, v_{m,n-3}\}, \\ S_{13} = \{v_{4,1}, v_{m-3,n}\}, \qquad S_{14} = \{v_{4,1}, v_{m-2,n-1}\}, \\ S_{15} = \{v_{4,1}, v_{m-1,n-2}\}, \qquad S_{16} = \{v_{4,1}, v_{m,n-3}\}.$$

Let $\mathbf{H} = G_{m,n} - (J_1 \cup J_2 \cup J_{m-1} \cup J_m \cup L_1 \cup L_2 \cup L_{n-1} \cup L_n)$. Then H is a complete grid of $(m-4) \times (n-4)$ - order, thus, H is hamiltonian. Let P_1 be a hamiltonian path of H:

$$P_{1} = v_{4,3}v_{3,3}v_{3,4}v_{4,4}v_{5,4} \cdots v_{m-3,4}v_{m-3,5}v_{m-4,5}v_{m-5,5} \cdots v_{3,5}v_{3,6}v_{4,6}v_{5,6} \cdots v_{3,n-2}v_{4,n-2}$$

$$\cdots v_{m-3,n-2}v_{m-2,n-2}v_{m-2,n-3}v_{m-2,n-4} \cdots v_{m-2,4}v_{m-2,3}v_{m-3,3} \cdots v_{5,3} \cdot \cdots v_{5,3}$$

Let

 $P_2 = v_{5, 2} v_{5, 1} v_{6, 1} v_{6, 2} \cdots v_{m-2, 1} v_{m-1, 1} v_{m, 1} v_{m, 2} v_{m-1, 2} v_{m-1, 3} v_{m, 3} \cdots v_{m, n-4} v_{m-1, n-4} v_{m-1, n-3}$ and

 $P_3 = v_{m-3, \ n-1} v_{m-4, \ n-1} v_{m-4, \ n} \cdots v_{4, \ n} v_{4, \ n-1} v_{3, \ n-1} v_{3, \ n} v_{2, \ n} v_{1, \ n} v_{1, \ n-1} v_{2, \ n-1} \cdots v_{2, \ 6} v_{1, 6} v_{1, 5} v_{2, 5} v_{2, 4}.$ Then P_2 and P_3 are two disjoint paths of the subgraph $\langle J_1 \bigcup J_2 \bigcup J_{m-1} \bigcup J_m \bigcup L_1 \bigcup L_2 \bigcup L_{n-1} \bigcup L_n \rangle$ of $G_{m, n}$.

By means of P_1 , P_2 and P_3 , we can easily construct the hamiltonian cycles in $G_{m,n} = S_i$, where $i = 1, 2, \dots, 16$. As examples, we only consider the first two cases. The other cases are completely similar.

Case 1. $v_{2,4}v_{2,3}v_{1,3}v_{1,2}v_{1,1}v_{2,1}v_{2,2}v_{3,2}v_{3,1}v_{4,1}v_{4,2}$ $P_1P_2v_{m,n-3}v_{m,n-2}v_{m-1,n-2}v_{m-1,n-1}v_{m,n-1}v_{m,n-2}v_{m-1,n}v_{m-2,n}v_{m-2,n-1}P_3$ is a hamiltonian cycle in $G_{m,n}-S_1$.

Case 2. $v_{2,4}v_{2,3}v_{1,3}v_{1,2}v_{1,1}v_{2,1}v_{2,2}v_{3,2}v_{3,1}v_{4,1}v_{4,2}P_1P_2v_{m,n-3}v_{m,n-2}v_{m-1,n-2}v_{m-1,n-1}v_{m,n-1}v_{m,n}v_{m-1,n}v_{m-2,n}v_{m-3,n}P_3$ is a hamiltonian cycle in $G_{m,n}-S_2$.

Acknowledgements

The author would like to thank Professor Sun Shupeng and Wang Chaorui for their many aids .

References

- [1] S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, Which grids are hamiltonian? Congre ssus Numerantium Vol. 29(1980), 511-524.
- [2] G. Thompson, Hamiltonian tours and paths in rectangular lattice graphs, Mathematics Magazine 50 (1977), 147—150.