Journal of Mathematical Research and Exposition Vol.9, No.2 May, 1989

A Fixed Point Theorem and its Application to Best Approximation.

Guo Yuanming (郭元明)

(Hunan College of Education)

The object of this paper is twofold. First, a fixed point theorem of G.L. Cain, Jr. and M.Z. Nashed [1] is generalized. Second, the theorem (Theorem!) is utilized to obtain theorems on best approximation which extend and unify the results of Meinardus [2], Singh [3-4], and Sahney-Singh-Whitfield [5].

Throught this paper E will denote a Hausdorff locally convex linear topological space " T_2 LCS" and Q a (fixed) family of continuous seminorms which generates the topology of E. Let G be a nonempty subset of E, and p be a continuous seminorn on E. For $x \in E$, define

$$d_{p}(x, G) = \inf\{p(x-y): y \in G\}.$$

A mapping $T: G \rightarrow G$ is said to be a p-contractive if there is a λ_p , $0 \le \lambda_p \le 1$ such that

$$p(Tx - Ty) \leqslant \lambda_{n} p(x - y) \tag{1}$$

for all $x, y \in G$ and $p \in Q$.

Definition 1. A mapping T on a subset G of a T_2LCS E, mapping G into E is said to be p locally contractive if for every $x \in G$ and $p \in Q$ there exist $\varepsilon_p(x)$ and $\lambda_p(x)$ ($\varepsilon_p > 0$, $0 \le \lambda_p \le 1$) such that:

$$y_1, y_2 \in \mathbf{S}_p(x, \varepsilon_p) = \{g : p(g - x) \le \varepsilon_p\} \text{ implies } (1)$$

If both ε_p and λ_p do not depend on $x \in G$, T is said to be $(\varepsilon_p, \lambda_p)$ -uniformly locally contractive.

Definition 2. A subset G of E is said to be ε_p -chainable if for any pair $x, y \in G$ and all $p \in Q$, we can find a finite number of elements x_i , $i = 0, 1, 2, \dots, k$ with $x_0 = x$ and $x_k = y$ such that:

$$p(x_{i-1}-x_i) \leq \varepsilon_p, i=1,2,\dots,k$$
.

Theorem 1. Let G be a sequentially complete ε_p -chainable subset of a T_2LCS E. If $T:G \to G$ is $(\varepsilon_p, \lambda_p)$ -uniformly locally contractive, then there exists a unique point $u \in G$ such that Tu = u.

Theorem 2. Let E be a T_2LCS , G be a subset of E, and $T: E \rightarrow E$ having

^{*} Received Dec. 9.1987.

a fixed point b such that $p(x-y) \le \varepsilon_p$ (for a positive number ε_p , $\varepsilon_p \ge d_p(b, G)$ implies $p(Tx-Ty) \le p(x-y)$ for every $p \in Q$. Let T map ∂G into G. Assume that for every $p \in Q$ the set D of best G approximants to b with respect to p is none mpty, sequentially complete, bounded, and starshaped. Furthermore, assume that (I-T) (D) is closed. Then T has a fixed point which is a best approximation to b in G.

Results of Meinardus [2, Theorem], Singh [4, Theorem 1], and Sahney Singh Whitfield [5, Theorem 2.1] can be easily deduced from Theorem 2.

In the following, we try to relax the starshaped condition on $\mathbf D$ in Theorem 2 .

Definition 3. Let D be a closed subset of E. A family of maps $\{f_x\}_{x\in D}$ is said to be quasiconvex structure on D if it satisfies the following conditions:

- (i) $f_x:[0,1] \rightarrow D$, i.e., f_x is a map from [0,1] into D for each $x \in D$.
- (ii) $f_x(1) = x$ for each $x \in \mathbf{D}$.
- (iii) $f_x(t)$ is jointly continuous in (x, t) i.e. $f_x(t) \rightarrow f_{x_0}(t_0)$ for $x \rightarrow x_0$ in D and $t \rightarrow t_0$ in [0, 1].
- (iv) $p(f_x(t) f_y(t)) \subseteq \Phi_p(t) p(x-y)$ for all $x, y \in D$ and $p \in Q$, where Φ_p is a function from [0,1] into itself.

Theorem 3. Let E be a T_2LCS , and $T:E\to E$ be p nonexpansive mapping. Let $T:\partial G\to G$ and b be a T invariant point. Assume that for every $p\in Q$ the set D of best G approximants to b with respect to p is nonempty and compact. Fur thermore, assume that there exists a quasiconvex structure on D. Then T has a fixed point which is a best approximation to b in G.

References

- [1] G. L. Cain, Jr., and M. Z. Nashed, Pacific J. Math. 39(1972), 581-592.
- [2] G. Meinardus, Arch. Rational Mech. Anal.14(1963), 301-303.
- [3] S.P.Singh, J.Approx. Theory 25(1979), 88-89.
- [4] S.P. Singh, J. Approx. Theory 28(1980), 329-332.
- [5] B.N. Sahney, K.L. Singh, and J.H. M. Whitfield, J.Approx. Theory 38(1983), 182-187.
- [6] G. Köthe, "Topological vector Spaces I", Springer-Verlag Berlin, Heidelberg, New York 1983.