A Newton Method for Minimizing One-Order Lipschitz Functions

Guo Jian

(Dept. Appl. Math., Dalian Univesity of Technology)

In this paper, we consider the following unconstrained optimization problem $(P) \qquad \min\{f(x) | x \in \mathbb{R}^n\},$

where f(x) is a one order Lipschitz function on \mathbb{R}^n , i.e., g(x)—the gradient of f(x)—is Lipschitzian. We will represent a kind of Newton method for solving the problem (P).

Denoting the generalized Hessian matrix of f(x) at x by $\partial^2 f(x)$, we define a ser valued mapping $N^+: \mathbb{R}^n \to P(\mathbb{R}^n)$ by

$$N^{+}(x) = \{y = aH^{-1}g(x) \mid \forall H \in \partial^{2}f(x), H^{-1} \text{ exists, } a = a(x, H) \text{ is determined by some methods} \}.$$

Starting from any point $x_1 \in \mathbb{R}^n$, the sequence $\{x_i\}$ generated by Newton method for solving (P) will be defined by

$$x_{i+1} \in N^{+}(x_{i}), i = 1, 2, \cdots$$

Theorem | Suppose that there exists a $x_0 \in \mathbb{R}^n$ such that the level set $L(x_0) = \{x \mid f(x) = f(x_0)\}$ is a bounded convex set and f(x) is uniformly convex on $f(x) = L(x_0)$. If a = a(x, H) is the optimal step, i.e., $f(x - aH^{-1}g(x)) = \min\{f(x - aH^{-1}g(x)) \mid a \geq 0\}$, then

- (a) N'(x) is well defined at each $x \in L(x_0)$ and mapping N^+ is closed at each $x \in L(x_0)$.
- (b) for any $x_1 \in L(x_0)$, the sequence $\{x_i\}$, generated by the above Newton method, terminates at the unique optimization solution x of (P) or converges to x^* .

Theorem 2 Suppose that x^* is a local optimization solution of (P) and f(x) is twice differentiable at point x^* and uniformly convex near x^* . Then there exists a $\sigma = 0$ such that if $x_1 \in N(x^* = \sigma)$, the sequence $\{x_i\}$, which is generated by the above Newton method with stepsize $a_i = a_i(x_i, H_i) = 1$, linearly converges to x^* .

Furthermore, if the generalized Hessian matrix $\theta^2 f(x)$ satisfy the following (to 401)

^{*} Received Dec. 3, 1987.

belongs to M_{n+p} .

Proof From the definition of F(z) we have

$$D^{n+p-1}f(z)=D^{n+p}F(z)$$

and

$$(n+p)D^{n+p}f(z) = (n+p+1)D^{n+p+1}F(z) - D^{n+p}F(z)$$
.

From these relations and the fact that $f(z) \in M_{n+p-1}$, we get

$$\operatorname{Re}\left(\frac{(n+p+1)D^{n+p+1}F(z)-D^{n+p}F(z)}{(n+p)D^{n+p}F(z)}-2\right)$$

$$= \operatorname{Re}(\frac{D^{n+p}f(z)}{D^{n+p-1}f(z)} - 2) < -\frac{n+p-1}{n+p}$$

from which it follows that

$$\operatorname{Re}(\frac{D^{n+p+1}F(z)}{D^{n+p}F(z)}-2) < -\frac{n+p}{n+p+1}$$

Thus $F(z) \in M_{n+p}^{-}$.

References

- [1] S.K. Bajpai, Rev. Roumaine Math. Pures Appl. 22 (1977), 295-297.
- [2] M. D. Ganigi and B. A. Uralegaddi, New Criteria for meromorphic univalent functions.
 (Submitted)
- [3] R. M. Goel and N. S. Sohi, Proc. Amer. Math. Soc. 78(1980), 353-357.
- [4] I.S. Jack, J. London Math. Soc. (2) 3(1971), 469-474.
- [5] St. Ruscheweyh, Proc. Amer. Math. Soc. 49(1975), 109—115.

(from 402)

condition in a neighborhood of x^* ,

$$||H - H^*|| \le K ||x - x^*||, \forall H \in \partial^2 f(x), H^* = \partial^2 f(x^*),$$

then the algorithm given above possesses the convergency of order 2.

References

- [1] Guo J., J. Dalian Inst. of Tech., 1988(in press).
- $[\![2 \,]\!]$ Guo J ., On the convergence of BFGS algorithm .
- | 3] Zangwill W.I., Nonlinear Programming: a Unified Approch (Prentice Hall, Englewood Cliffs, 1969).