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When is a module determined by its lattice of submodules? Baer gave two
elegant results as follows.

Theorem Al'7, Let G be a p-group with final rank >3 or abounded p-group
containing three independent elements of maximal order. Then every isomor-
phism of the lattice of subgroups L(G) onto L(H) is induced by an isomorphism
from G onto H, where H is a p-group and G and H are commutative .

. Theorem B'?! Let V.,,i=1,2, be a finite dimensional vector space over a di-
vision ring A, and assume the lattice of subspaces L) ~ L) and dim(V,) >>3.Then
A, =~A, and dlm(V])—dlm(Vz). Moreover, any isomorphism of L(}]) onto L, is
induced by a bijective semi-linear map of ¥, onto ¥, .

In fact, there exists an unified form of the above two results as follows.

Assume R,,i=1],2, is a MLPI ring (i.e., R, is an associative ring with unit
1, and its every maximal left ideal is a principal ideal), p, is .an elment of R,
such that R,p is a maximal left ideal of R,, M,is a p,-primary R,-module [3],
simply, primary module. Then we have

Theorem C. Assume the lattice of submodules L(M, )~L(M ) and final Gol—
die dimension M,>3. Then there exists an isomorphism {y,: R, /R p{—>R,/R,p;(neN)}
between inverse system'‘ (R, /R pl(neN)s 6,) and inverse system {R,/R,p;(neN);
6!}, where 6, and 6, (neN) are canonical epimorphic, Y.(neN) is an isomorphism
of rings. Let R} and R} be the inverse limit of these inverse systems, respectively.
Then there exists ring isomorphism y from R} onto R} and a bijective y-linear
map of M, onto M, which is inducing f, where final Goldie dimension M =

1

min Goldie dimension p/M, .
”:0.1,2.'"

When M, is bounded with three independent elements of maximal order, we
obtain a result which is similar to Theorem C

Throughout this paper we discuss always under the hypotheses of TheoremC.

We begin the proof of Theorem C with the following.
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Proposition |E5] Let R be a ring, M, be a primary R -module. Then for

each (staeM, there exists a natural number neN such that

andg(a) =R p{#Rp/ ' .
In this case, n is calied thel order of a and denoted by o(a). Define o((¢) =0. It
is clear that M, is bounded if and only if the set {o(a)|aeM,} is finite.
‘ Proposition 2. Let R, and R, be rings, M, =R a, be a primary R, -module.If
o(a;)=n, then L(M,)~[0,n—1]. Furthermore, if M, is a primary R,-module such
that L(M,)~L(M,), then M,=R,a, and o(a,) =n.

Proof Let A be any non-trivial submodule of M, then there is anelement
0#b=rpia,eA with reR - R,p, and 0<t<n. By the definition of R,p,, R, =R+
R p=++=Rr+R p/, and hence 1=ur+op"(u,veR,). Thus pja,=ubeAd. Let k be
the least natural number such that p'l‘aleA, then A:Rlp',‘a1 since for each ceA
with ¢ =rpja, and r¢R, ~R,p,, we get piacA, and hence r>k and ceRlpfa, .The -
refore, A=Rlpfa, and L(M)~[0,n—17.

Suppose L(M,) ~L{M,), then L(M,) is a chain, and hence for each beM,
with o(b) =t, L(R,b)~[0,1-1] is a sublattice of [0,n-1]. Thus r<n. Let a,eM,
such that o(a,) =m=max{o(b)|beM,}. We claim that M,=R,a, and m=n.

Since L(M,) is a chain, for each beM, with o(b) =t<(m, we have (1) R,b
<R,py"a,,or 2) R b>R2p;""'a2 . We only prove that ( 2 ) can not hold.Otherwise,
24 azprb for some reR,. If reR,-R,p,, then there exists an element wueR, such
that & =urb=up; 'a,cR,p; 'a,, a contradiction. On the other hand, if reR,p,,i.e.,
r=r,p, for some r,eR,, then o(rb) =o(r,p,b)<t-1<t=o0(p; 'a,) =o(rb), a contra-
diction, tob, Hence M,=R,a,, and m=n.since

[0,m~-1]~L(M,)=L(M)~[0,n—1]. : [

Lemma 3 Let M, be a primary R -module such that M, = XY where Xand
Y are cyclic primary modules, and let f be an isomorphism of L(M.l) onto L(M,) .
To any generators x’, y’ of f(X), f(Y) one can find genrators x,ybf X,Y such
that fR (x+y)=R,(x"+y’). Here x+y may be any generator of f"R (x"+y.

Lemma 4 Let M, =R u@R xsuch that o(x)<o(u) If L(Ml;~L(M2/ with fR u
=R, u , then there exists one and only one x’eM,such that

SR, x=R,x’ and le(x+u)=R2(x +u'),

Conveniently, we may write x' =g@(xsu,u’, ).

Lemma 5 Assume M,=Ru@A such that ann, () <R p".If LMpL LM,
and fRu=R,u’, then the mapping

xi>x'=g(xsu,u’, f) (xeAd)
is one-to-one between A4 and f(A).
Sometimes, we denote ¢(x;u,u’, f) by e(x).
Lemma 6 Under the hypotheses of Lemma 5, if x, yed and u, x,y are



b

(r

indepent (i.e., Ru+ R x+R,y=Ru®dR,yDR,y), then
px+ysu,u'y fl=g(xsu,u’y v+ @(ysu,u’y ). (*)

The proofs of the above Lemmas 3-6 refer to [1].

‘Lemma 7 Assume in addition to the hypotheses of Lemma § thatto each zed
there exists a w(e¢Ad) independent of u, zwith o(z) < o(w). Then (* ) holds for
every pair x, yed,

Proof First we prove ¢(rz)=¢(z)+¢(r-r1)z for all zeA and all reR, .Choose
a w as stated. Then z,w-z and u, further w+z, (r-1)z and « are independent,
so that Lemma 6 implies p(w)=p((w-2)+z]=@p(w-2z)+gtz)=p(w)+e(—-2)+ ¢(2)
and hence @(-z)=-@(z), and pw) +p(rz) =pw+rz) =gl (w+z)+(r- Dzl=pw+
D+ el(r-Dz]=pw) +@(2)+ 9l (r—1)z) implies @(rz)=¢(z)+((r—1)z].

In particular, r=n-1 (neZ), by induction, we obtain ¢(nz)=ne(z).

Now if x, y are arbitrary elements of A, not loss generality, we may assume
o(y)<.o(x). By the following Proposition 8, there exists an reR, such that y =y
+rx and x are independent, and hence @(y) =9y, —rx) =9(y,) - @(rx), @(x)=
p(rx) —ol(r- Dx)=gx)+l(1-rx], px+ ) =p({(y+rx)+ (1-Nx)=ply)+el(1-
rx)=g(x)+e(y).

Proposition § Let M, =R x+ Ry with k:=0(y)<<o(x)=:s.Then there exists
an reR, such that M, =R xR, y, where y =y+rx.

Proof Since Rlpf"y and Rlpi‘f‘x are irreducible, we have the following:

(i) If Rp{ 'y#R,p, 'x, then M, =R xPR,y;

(ii) If RIP,M)’:RM’: 'x, then p:‘*'y:ulpfﬂx: p,“ul’x (since R, p,=p,R,) for
some u,,u/eR . Let y =y- p; “u/x, then M, =R x+R,y, but k =o(y )<k-1<o(y).
Assume R x + R,y is not direct sum, then R, pl“y, :Rlpl‘_'x, similarly, there exists
a y,=y ~u,x (u,eR ) such that M, =R x+R,y, but k,=o(y,) <o(y)).

It is clear that there is a y, =y, ,—ux=y+rx(u,, reR)) such that M =R xD
Ry, . . |

Lemma 9 Let M, be a primary R,-module such that annka,):Rlp'{, and
suppose u, »,w are independent elements of order k in M, . If L(M,)sz(Mz) and
SRu=R,u’, then the following three statements hold:

(i) The mapping x->@(x; u, u’, f) induces a unique group isomorphism ¢:
M, ~M, such that g(u)=u’.

(i1) There exist ring isomorphisms

¥,:R /R pi—>R,/R,p;, 1=1,2,,k

and commutative diagrams :

,
Rl/R]lp: : RZ/RZPIZ
b | 6, (1)

W ;
Rl/Rlpll l————'—->R2/R2p;
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where ¢, and «9,’ (t=1,2,+, k) are canonical homomorphisms.
(iti) @(rx) =@(rx) =¢,(r)-@(x), where r=o0(x),r is the image of r under the
natural mapping R——R, /R p, .

Proof (i) Firstly, by, M, :Rlpf, there exist elements z e¢M, such that M, =
Rlu@Rw@le@(@aRlza). Bly Lemmaj, the mapping x—>@(x;u,u’, f)=:p(x)is a
group isomorphism from A(=Rv+Rw+ (L R z,)) onto f(A) and M,=R,u'Df(A.
For every reR,, ¢(rv) =r'@(y) with r’+R2p’2‘ is unique in Rz/Rzp’z‘- since eru<Rlz;
and fRp is cyclic R,-module. We may assume that 0'=0, 1'=1.

Next for each zeRw+ (£ R z,). Denote o(rz)=r"g(z) with r"+R, p, is uni-
que in R,/R,p,, where t=0(z). We also assume (”=¢ and 1”"=1.Then

' r'e(z)=r"g(z) (reR)), (2)
since @(rv) —@(rz)=g(r(p-2z)), we have r'gpy) —r"p(z)=r*p») - p(z)] for some
r*¢R,, and r/—r*eRzp;‘ and r’—r*eR,p;. It follows that r'—r"¢R,p, and r'p(z) =
r"@(z). Therefore @(riu+rotrw+ X r.z)=rieu) +ripw) +rip(w)+ ¥ rig(z,).

It is clear that ¢ is a group isomorphism of M, onto M,.

(ii) Now we prove R,/R,p{=R,/R,ps. For every pair a, beR,, R,(u'+ (a+
5)Yv' +w)H<CR,(u' +a’d’) + R)(b'v"+w’) since ’
Ru+(a+b)yo+w)<R(u+av) +R bo+w).
But the only element of the form «’'+ ¢y’ +w’ contained in the righthand side is
u' + (@’ +bo'+w’. It follows that
(a+b)v' =(a'+b)', (a+b) - (a'+b")eRyp5.
Similarly, using the fact that R (u+aby+w)<Ru+ R, (bp+w), we can conclude
that (ab)v’=a’b’v’, (ab) - (a/b/)eRzp:. Define I/Jk:Rl/Rlpf»Rz/Rzp:, given by
Y la+ Rlpf) :a/+R2p:, we can easily check ‘that ¥, is a ring homomorphism. We
claim that y, is isomorphic. y, is monic, since for each aéRlpf, R (p+aw)*£Rp,
Row. It follows R,(s'+a'w)#Rp', R,w’ and a’'€ R,p5. ¢, is epic, since f™:
LM, ~L(M,) and f"Ru'=Ru, f'Rp' =Ry, 'R, +v') =R (u+p), for each a
€R,, we obtain ffleaz/:Rlav, f_'Rz(u”+az/):R,(u+au), hence R,ev'= fRav=
R,a'y’, and R,(u'+av') = fR (u+av) =R,(u’+a’y’), r*(u'+av’) =u’+a’v’ for some
r*¢R,. Thus r*- 1eR2p'2‘, ap’=a’y’ and a—a’eRzp'; . Therefore y, is isomorphic.

On the other hand, if fR z=R,z’, by Proposition 2, then o(z)=0(z’).Suppese
z=pt"y, then o(z)=t=0(z"). If p(rz)=r"p(z) (reR,), 0"=0 and 1"=1, by (2),
r'p(z) =r"p(z). Similarly, we obtain a ring isomorphism y,:R,/R,p; >R,/R,p},
given by y,(a+R,p)) =a"+R,p, when we consider u, y(=p'“w) and z instead of
u,v and w, and a commutative diagram

¥
R, /R, p| 1 R,/R,p;
¥ .
Rl/Rlpf : RZ/RZPIZ(
— 1y —
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where the column homomorphisms are natural homomorphisms. Moreover, we
have commutative diagrams

¥,

Rl/Rlp’l Rz/Rzp;
9, | g

R R t -1 '/}I~1 %R R -1
/R, p, /R, p,

1=1,2, %, k.
(iii) By (i1), we obtain immediately (p(E):q;(rx)zr’q)(x):1/),(;)°<p(x),where
r=o(x), r is the image of r under the canonical mapping RI%RI/R,p; .

Finally, the above ¢@(@(u)=wu’) is unique, this proof refers to [ 1 ]. [ ]

Now we give the proof of Theorem C.

For a fixed ke¢N, consider Ml(pf) and Mz(p:). It is clear that f induces an
isomorphism : L(Ml[pf])::L(Mz[p'z‘]). By Lemma 9, there is a group isomorphism
@, of Ml[pf] onto M'L{p’z‘] and there are ring isomorphisms y, of R]/Rlp; onto R,/
Rzp;(t: 1,2,, k), which satisfy (1). Choose elements w, veM, with o(») =k+1
=o(w). It follows that u= poeM [p/]. Denote ¢,(p,») =u’. Let fRw=R,w”, then,
by ‘Lemma 9, there is a unique group isomorphism ¢, (@, (w) = w”)’from;M'l[p’;*"]
into Mz[p’;+l ].. By the definition of ¢; ,, we have

SRv=R,p" and fR,(w+p) = R,(w"+2"),
SR, po=R,p/v” and fR (w+ pv) =R, (w'+ p2")
On the other hand, ¢ (p») =u’, i.e., fR pwv=Ru" 1t follows that Ru’=R,p/»"
and u'=r,p/s” for some r,eR,-R,p,. Thus there exists an r ¢R, such that
rlr2~1eR2p’2‘ (3)

k+l

We need another isomorphism ¢, , from Ml[pfﬂ] into M, [ p,

] such that ¢, (p,0)
=@, (po). By (3), the following hold,
R,w”=R,r,w”, R,p"=R,r,v", R,(w" +0") = R,(r,w” +r"),
R,p/v" = R,ryp/r -r,p” and R,(w”+ p/v") = R,(ry;w” +r,pir -r,p").
. . . . o, k+
By Lemma 9, there is a unique isomorphism ¢,,, from M ,[p" Jinto M,[p;" Jsuch
that g, () =r" and ¢, ,(p0)=r,p(r,. @, () =1,pr - r"=r,p/v"=u = ¢,(p»). Thus
Prv1Mipi1™ Pice
Remark . (1) If o/ (ro) =r"g, () =r"v"(reR;), then
@i (ro) =ryr'r @ (0).
(2) ¢,,, is inducing a ring isomorphism
k+1 k1
Y R/R Py~ Ry/R; D,
. + , + ..
given by ¢k+l(r+Rlp’l‘ My = r,r'r, +R2p’; ', and Y., and p, e, 4, satisfy (1),
Thus there are two classes of isomorphisms:
¢l’."’ (pk,...; wl’".’ I/Jk"".

such that ¢ =@ (k=1,2,+) and §,, >, ¥, satisfy (1) .Therefore there
k+1|M . Cpy ]
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exists a mapping ¢ agreeing with ¢ _ on M][pf] for every k. Since MlszIMl[pf],
we get an isomorphism of M, onto M,, and ¢ and ¢,, >, §,, - satisfy the con-

ditions of Lemma 9. Since the following diagram commutative
0 0 g
e > RI/RIP,; e 4 Rn/Rnl’ik‘ > -~ R /R p, >0

|

wkﬂl ” 'pkl . wW
e Rz/Rzpl;+l s Rz/Rzplz( e >R, /Rpy >0
we get a ring isomorphism y of R} onto R}, given by
pirt=(r,+ R pH—> (r)+R,pY),
where R* =lim (R,/R,p}, 6,) is the inverse limit of the inverse system {R,/R,p!,
6,i,i=1,2.
On the other hand, M_can be regarded as R’ module in a natural way[‘”,
i=1,2. and the following holds.
p(r*x) =yp(r*)p(x) for all r*eR}, all xeM, .
Thus ¢ is indeed a y-linear isomorphism of M, onto M, and is inducing the
lattice isomorphism f:fR x = R,p(x). n
Conclusion If p, =0=p,, then Theorem C implies Theorem B; if R, =7=R,
and p, and p, are two prime numbers, then Theorem C implies that p =p, and
Theorem A,
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N); 0, ZRIMFE® {(4,:R, /R, pi >R, /R,p, (neN), H 6,76, (neN) REARBRIE, ¢,(ne

"NEFRRM. HESRLRISWEL EFHAA S AR B ERRE. WEKRRK R =R

M, BIM, M y-BBE R, oS M SR x=R,p(x), YxeM,.
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