Primary Modules Determined by Their Lattice of Submodules*

Zhou Borong

(Department of Mathematics, Hangzhou University)

When is a module determined by its lattice of submodules? Baer gave two elegant results as follows.

Theorem $A^{[1]}$. Let G be a p-group with final rank $\geqslant 3$ or a bounded p-group containing three independent elements of maximal order. Then every isomorphism of the lattice of subgroups L(G) onto L(H) is induced by an isomorphism from G onto H, where H is a p-group and G and H are commutative.

Theorem B^[2]. Let V_i , i=1,2, be a finite dimensional vector space over a division ring Δ_i and assume the lattice of subspaces $L(V_1) \simeq L(V_2)$ and $\dim(V_1) \geqslant 3$. Then $\Delta_1 \simeq \Delta_2$ and $\dim(V_1) = \dim(V_2)$. Moreover, any isomorphism of $L(V_1)$ onto $L(V_2)$ is induced by a bijective semi-linear map of V_1 onto V_2 .

In fact, there exists an unified form of the above two results as follows.

Assume R_i , i = 1, 2, is a MLPI ring (i.e., R_i is an associative ring with unit 1, and its every maximal left ideal is a principal ideal), p_i is an elment of R_i such that $R_i p_i$ is a maximal left ideal of R_i , M_i is a p_i -primary R_i -module [3], simply, primary module. Then we have

Theorem C. Assume the lattice of submodules $L(M_1) \stackrel{f}{\simeq} L(M_2)$ and final Goldie dimension $M_1 \geqslant 3$. Then there exists an isomorphism $\{\psi_n : R_1/R_1 p_1^n \rightarrow R_2/R_2 p_2^n (n \in \mathbb{N})\}$ between inverse system $\{R_1/R_1 p_1^n (n \in \mathbb{N}); \theta_n\}$ and inverse system $\{R_2/R_2 p_2^n (n \in \mathbb{N})\}$, where θ_n and θ_n' $(n \in \mathbb{N})$ are canonical epimorphic, $\psi_n(n \in \mathbb{N})$ is an isomorphism of rings. Let R_1^* and R_2^* be the inverse limit of these inverse systems, respectively. Then there exists ring isomorphism ψ from R_1^* onto R_2^* and a bijective ψ -linear map of M_1 onto M_2 which is inducing f, where final Goldie dimension $M_1 = \min_{n=0,1,2,\cdots}$ Goldie dimension $p_1^n M_1$.

When M_1 is bounded with three independent elements of maximal order, we obtain a result which is similar to Theorem C

Throughout this paper we discuss always under the hypotheses of Theorem C. We begin the proof of Theorem C with the following.

^{*} Received Mar. 25, 1988.

Proposition $I^{[5]}$ Let R_1 be a ring, M_1 be a primary R_1 -module. Then for each $0 \neq a \in M_1$ there exists a natural number $n \in N$ such that

and_R(a) =
$$R_1 p_1^n \neq R_1 p_1^{n-1}$$
.

In this case, n is called the order of a and denoted by o(a). Define o(0) = 0. It is clear that M_1 is bounded if and only if the set $\{o(a) | a \in M_1\}$ is finite.

Proposition 2. Let R_1 and R_2 be rings, $M_1 = R_1 a_1$ be a primary R_1 -module. If $o(a_1) = n$, then $L(M_1) \simeq [0, n-1]$. Furthermore, if M_2 is a primary R_2 -module such that $L(M_2) \simeq L(M_1)$, then $M_2 = R_2 a_2$ and $o(a_2) = n$.

Proof Let A be any non-trivial submodule of M_1 , then there is an element $0 \neq b = rp_1'a_1 \in A$ with $r \in R_1 - R_1p_1$ and 0 < t < n. By the definition of R_1p_1 , $R_1 = R_1r + R_1p_1 = \cdots = R_1r + R_1p_1^n$, and hence $1 = ur + vp''(u, v \in R_1)$. Thus $p_1'a_1 = ub \in A$. Let k be the least natural number such that $p_1^ka_1 \in A$, then $A = R_1p_1^ka_1$ since for each $c \in A$ with $c = rp_1'a_1$ and $r \in R_1 - R_1p_1$, we get $p_1'a_1 \in A$, and hence t > k and $c \in R_1p_1^ka_1$. The refore, $A = R_1p_1^ka_1$ and $L(M_1) \simeq [0, n-1]$.

Suppose $L(M_1) \simeq L(M_2)$, then $L(M_2)$ is a chain, and hence for each $b \in M_2$ with o(b) = t, $L(R_2b) \simeq [0, t-1]$ is a sublattice of [0, n-1]. Thus $t \le n$. Let $a_2 \in M_2$ such that $o(a_2) = m = \max\{o(b) | b \in M_2\}$. We claim that $M_2 = R_2a_2$ and m = n.

Since $L(M_2)$ is a chain, for each $b \in M_2$ with $o(b) = t \le m$, we have $(1) R_2 b \le R_2 p_2^{m-t} a_2$, or $(1) R_2 b \ge R_2 p_2^{m-t} a_2$. We only prove that (2) can not hold. Otherwise, $p_2^{m-t} a_2 = rb$ for some $r \in R_2$. If $r \in R_2 - R_2 p_2$, then there exists an element $u \in R_2$ such that $b = urb = up_2^{m-t} a_2 \in R_2 p_2^{m-t} a_2$, a contradiction. On the other hand, if $r \in R_2 p_2$, i.e., $r = r_2 p_2$ for some $r_2 \in R_2$, then $o(rb) = o(r_2 p_2 b) \le t - 1 \le t = o(p_2^{m-t} a_2) = o(rb)$, a contradiction, too, Hence $M_2 = R_2 a_2$, and m = n since

$$[0, m-1] \simeq L(M_2) \simeq L(M_1) \simeq [0, n-1].$$

Lemma 3 Let M_1 be a primary R_1 -module such that $M_1 = X \oplus Y$ where X and Y are cyclic primary modules, and let f be an isomorphism of $L(M_1)$ onto $L(M_2)$. To any generators x', y' of f(X), f(Y) one can find genrators x, y of X, Y such that $fR_1(x+y) = R_2(x'+y')$. Here x+y may be any generator of $f^{-1}R_2(x'+y')$.

Lemma 4 Let $M_1 = R_1 u \oplus R_1 x$ such that $o(x) \leqslant o(u)$. If $L(M_1) \stackrel{f}{\leq} L(M_2)$ with $fR_1 u = R_2 u'$, then there exists one and only one $x' \in M_2$ such that

$$fR_1x = R_2x'$$
 and $fR_1(x+u) = R_2(x'+u')$.

Conveniently, we may write $x' = \varphi(x; u, u', f)$.

Lemma 5 Assume $M_1 = R_1 u \oplus A$ such that $\operatorname{ann}_{R_1}(A) \leq R_1 p_1^{o(u)}$. If $L(M_1) \stackrel{f}{\simeq} L(M_2)$ and $fR_1 u = R_2 u'$, then the mapping

$$x \mapsto x' = \varphi(x; u, u', f) (x \in A)$$

is one-to-one between A and f(A).

Sometimes, we denote $\varphi(x; u, u', f)$ by $\varphi(x)$.

Lemma 6 Under the hypotheses of Lemma 5, if $x, y \in A$ and u, x, y are

indepent (i.e., $R_1u + R_1x + R_1y = R_1u \oplus R_1y \oplus R_1y$), then $\varphi(x + y; u, u', f) = \varphi(x; u, u', f) + \varphi(y; u, u', f).$ (*)

The proofs of the above Lemmas 3-6 refer to [1].

Lemma 7 Assume in addition to the hypotheses of Lemma 6 that to each $z \in A$ there exists a $w(\in A)$ independent of u, z with $o(z) \le o(w)$. Then (*) holds for every pair $x, y \in A$.

Proof First we prove $\varphi(rz) = \varphi(z) + \varphi(r-r_1)z$ for all $z \in A$ and all $r \in R$, . Choose a w as stated. Then z, w-z and u, further w+z, (r-1)z and u are independent, so that Lemma 6 implies $\varphi(w) = \varphi(w-z) + z = \varphi(w-z) + \varphi(z) = \varphi(w) + \varphi(-z) + \varphi(z)$ and hence $\varphi(-z) = -\varphi(z)$, and $\varphi(w) + \varphi(rz) = \varphi(w+rz) = \varphi((w+z) + (r-1)z) = \varphi(w+z)$ $z) + \varphi((r-1)z) = \varphi(w) + \varphi(z) + \varphi((r-1)z)$ implies $\varphi(rz) = \varphi(z) + \varphi((r-1)z)$.

In particular, $r = n \cdot 1$ $(n \in \mathbb{Z})$, by induction, we obtain $\varphi(nz) = n\varphi(z)$.

Now if x, y are arbitrary elements of A, not loss generality, we may assume $o(y) \le o(x)$. By the following Proposition 8, there exists an $r \in \mathbb{R}_1$ such that $y_1 = y$ + rx and x are independent, and hence $\varphi(y) = \varphi(y_1 - rx) = \varphi(y_1) - \varphi(rx)$, $\varphi(x) = \varphi(y_1 - rx)$ $\varphi(rx) - \varphi((r-1)x) = \varphi(rx) + \varphi((1-r)x), \quad \varphi(x+y) = \varphi((y+rx) + (1-r)x) = \varphi(y_1) + \varphi((1-r)x)$ $r(x) = \varphi(x) + \varphi(y)$.

Proposition 8 Let $M_1 = R_1 x + R_1 y$ with $k := o(y) \le o(x) = :s$. Then there exists an $r \in R_1$ such that $M_1 = R_1 x \oplus R_1 y_1$ where $y_1 = y + rx$.

Proof Since $R_1 p_1^{k-1}$ y and $R_1 p_1^{s-1} x$ are irreducible, we have the following:

- (i) If $R_1 p_1^{k-1} y \neq R_1 p_1^{s-1} x$, then $M_1 = R_1 x \bigoplus R_1 y$; (ii) If $R_1 p_1^{k-1} y = R_1 p_1^{s-1} x$, then $p_1^{k-1} y = u_1 p_1^{s-1} x = p_1^{s-1} u_1' x$ (since $R_1 p_1 = p_1 R_1$) for some $u_1, u_1' \in R_1$. Let $y_1 = y - p_1^{s-k} u_1' x$, then $M_1 = R_1 x + R_1 y_1$ but $k_1 = o(y_1) \leqslant k - 1 \leqslant o(y)$. Assume $R_1x + R_1y_1$ is not direct sum, then $R_1p_1^{k-1}y_1 = R_1p_1^{s-1}x$, similarly, there exists a $y_2 = y_1 - u_2 x$ $(u_2 \in R_1)$ such that $M_1 = R_1 x + R_1 y_2$ but $k_2 = o(y_2) < o(y_1)$.

It is clear that there is a $y_t = y_{t-1} - u_t x = y + r x (u_t, r \in R_1)$ such that $M_1 = R_1 x \oplus R_1$ $R_1 y_i$.

Lemma 9 Let M_1 be a primary R_1 -module such that $\operatorname{ann}_{R_1}(M_1) = R_1 p_1^k$, suppose u, v, w are independent elements of order k in M_1 . If $L(M_1) \stackrel{f}{\simeq} L(M_2)$ and $fR_1u = R_2u'$, then the following three statements hold:

- (i) The mapping $x \rightarrow \varphi(x; u, u', f)$ induces a unique group isomorphism φ : $M_1 \simeq M_2$ such that $\varphi(u) = u'$.
 - (ii) There exist ring isomorphisms

$$\psi_t : R_1 / R_1 p_1^t \rightarrow R_2 / R_2 p_2^t$$
, $t = 1, 2, \dots, k$

and commutative diagrams:

$$R_{1}/R_{1}p_{1}' \xrightarrow{\psi_{t}} R_{2}/R_{2}p_{2}'$$

$$R_{1}/R_{1}p_{1}'^{-1} \xrightarrow{\psi_{t-1}} R_{2}/R_{2}p_{2}'^{-1}$$

$$= 11 =$$

$$(1)$$

where θ_t and θ_t' $(t=1,2,\dots,k)$ are canonical homomorphisms.

(iii) $\varphi(rx) = \varphi(\overline{rx}) = \psi_r(\overline{r}) \cdot \varphi(x)$, where $t = o(x), \overline{r}$ is the image of r under the natural mapping $R_1 \longrightarrow R_1/R_1 p_1^r$.

Proof (i) Firstly, by $R_1M_1=R_1p_1^k$, there exist elements $z_a \in M_1$ such that $M_1=R_1u \oplus R_1u \oplus R_1w \oplus (\oplus_a R_1z_a)$. By Lemma 5, the mapping $x \to \varphi(x; u, u', f)=:\varphi(x)$ is a group isomorphism from $A(=R_1v+R_1w+(\sum_a R_1z_a))$ onto f(A) and $M_2=R_2u' \oplus f(A)$. For every $r \in R_1$, $\varphi(rv)=r'\varphi(v)$ with $r'+R_2p_2^k$ is unique in $R_2/R_2p_2^k$ since $R_1rv \leqslant R_1v$ and $f(R_1v)$ is cyclic R_2 -module. We may assume that 0'=0, 1'=1.

Next for each $z \in R_1 w + (\sum_a R_1 z_a)$. Denote $\varphi(rz) = r'' \varphi(z)$ with $r'' + R_2 p_2'$ is unique in $R_2/R_2 p_2'$, where t = o(z). We also assume 0'' = 0 and 1'' = 1. Then

$$r'\varphi(z) = r''\varphi(z) \ (r \in R_1), \qquad (2)$$

since $\varphi(rv) - \varphi(rz) = \varphi(r(v-z))$, we have $r'\varphi(v) - r''\varphi(z) = r^*(\varphi(v) - \varphi(z))$ for some $r^* \in R_2$, and $r' - r^* \in R_2 p_2^k$ and $r'' - r^* \in R_2 p_2^l$. It follows that $r' - r'' \in R_2 p_2^l$ and $r'\varphi(z) = r''\varphi(z)$. Therefore $\varphi(r_1u + r_1v + r_1w + \sum_a r_a z_a) = r_1'\varphi(u) + r_2'\varphi(v) + r_3'\varphi(w) + \sum_a r_a'\varphi(z_a)$.

It is clear that φ is a group isomorphism of M_1 onto M_2 .

(ii) Now we prove $R_1/R_1p_1^k \simeq R_2/R_2p_2^k$. For every pair $a, b \in R_1$, $R_2(u' + (a + b)'v' + w') \leq R_2(u' + a'v') + R_2(b'v' + w')$ since

$$R_1(u + (a+b)v + w) \leq R_1(u + av) + R_1(bv + w)$$
.

But the only element of the form u' + cv' + w' contained in the righthand side is $u' + (a' + b')\dot{v}' + w'$. It follows that

$$(a+b)'v' = (a'+b')v', (a+b)' - (a'+b') \in R_2 p_2^k.$$

Similarly, using the fact that $R_1(u+abv+w)\leqslant R_1u+R_1(bv+w)$, we can conclude that (ab)'v'=a'b'v', $(ab)'-(a'b')\epsilon R_2p_2^k$. Define $\psi_k:R_1/R_1p_1^k\to R_2/R_2p_2^k$, given by $\psi_k(a+R_1p_1^k)=a'+R_2p_2^k$, we can easily check that ψ_k is a ring homomorphism. We claim that ψ_k is isomorphic. ψ_k is monic, since for each $a\notin R_1p_1^k$, $R_1(v+aw)\neq R_1v$, R_1w . It follows $R_2(v'+a'w')\neq R_2v'$, R_2w' and $a'\notin R_2p_2^k$. ψ_k is epic, since f^{-1} : $L(M_2)\simeq L(M_1)$ and $f^{-1}R_2u'=R_1u$, $f^{-1}R_2v'=R_1v$, $f^{-1}R_2(u'+v')=R_1(u+v)$, for each $a\in R_2$, we obtain $f^{-1}R_2av'=R_1av$, $f^{-1}R_2(u'+av')=R_1(u+av)$, hence $R_2av'=fR_1av=R_2a'v'$, and $R_2(u'+av')=fR_1(u+av)=R_2(u'+a'v')$, $r^*(u'+av')=u'+a'v'$ for some $r^*\in R_2$. Thus $r^*-1\in R_2p_2^k$, av'=a'v' and $a-a'\in R_2p_2^k$. Therefore ψ_k is isomorphic.

On the other hand, if $fR_1z = R_2z'$, by Proposition 2, then o(z) = o(z'). Suppose $z = p_1^{k+t}v$, then o(z) = t = o(z'). If $\varphi(rz) = r''\varphi(z)$ ($r \in R_1$), 0'' = 0 and 1'' = 1, by (2), $r'\varphi(z) = r''\varphi(z)$. Similarly, we obtain a ring isomorphism $\psi_t : R_1/R_1p_1^t \to R_2/R_2p_2^t$, given by $\psi_t(a + R_1p_1^t) = a'' + R_2p_2^t$ when we consider u, $y = p_1^{k-t}w$ and z instead of u, v and v, and a commutative diagram

$$R_{1}/R_{1}p_{1}^{t} \xrightarrow{\psi_{t}} R_{2}/R_{2}p_{2}^{t}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

where the column homomorphisms are natural homomorphisms. Moreover, we have commutative diagrams

$$R_{1}/R_{1}p_{1}' \xrightarrow{\psi_{t}} R_{2}/R_{2}p_{2}'$$

$$\theta_{t} \qquad \qquad \theta_{t}' \qquad \qquad \theta_{t}'$$

$$R_{1}/R_{1}p_{1}' \xrightarrow{-1} \qquad \qquad \psi_{t-1} \qquad \qquad \Rightarrow R_{2}/R_{2}p_{2}' \xrightarrow{-1} \qquad \Rightarrow R_{2}/R_{2} p_{2}' \xrightarrow{-1} \qquad \Rightarrow R_{2}/R_{2}p_{2}' \xrightarrow{-1} \qquad \Rightarrow R_{2}/R_{2}p_{2$$

 $t = 1, 2, \dots, k$.

.2

(iii) By (ii), we obtain immediately $\varphi(\overline{rx}) = \varphi(rx) = r'\varphi(x) = \psi_t(\overline{r}) \cdot \varphi(x)$, where t = o(x), \overline{r} is the image of r under the canonical mapping $R_1 \rightarrow R_1/R_1 p_1'$.

Finally, the above $\varphi(\varphi(u) = u')$ is unique, this proof refers to [1]. Now we give the proof of Theorem C.

For a fixed $k \in \mathbb{N}$, consider $M_1(p_1^k)$ and $M_2(p_2^k)$. It is clear that f induces an isomorphism: $L(M_1[p_1^k]) \simeq L(M_2[p_2^k])$. By Lemma 9, there is a group isomorphism φ_k of $M_1[p_1^k]$ onto $M_{\mathfrak{C}}[p_2^k]$ and there are ring isomorphisms ψ_i of $R_1/R_1p_1^i$ onto $R_2/R_2p_2^i$ ($i=1,2,\cdots,k$), which satisfy (1). Choose elements $i=1,2,\cdots,k$ with $i=1,2,\cdots,k$ of $i=1,2,\cdots,k$. Denote $i=1,2,\cdots,k$ be noted that $i=1,2,\cdots,k$ be noted to $i=1,2,\cdots,k$ be noted to i=1,

$$fR_1v = R_2v''$$
 and $fR_1(w+v) = R_2(w''+v'')$,
 $fR_1p_1v = R_2p_1''v''$ and $fR_1(w+p_1v) = R_2(w''+p_1''v'')$.

On the other hand, $\varphi_k(p_1v) = u'$, i.e., $fR_1p_1v = R_2u''$. It follows that $R_2u' = R_2p_1''v''$ and $u' = r_2p_1''v''$ for some $r_2 \in R_2 - R_2p_2$. Thus there exists an $r_1 \in R_2$ such that

$$r_1 r_2 - 1 \epsilon R_2 p_2^k \tag{3}$$

We need another isomorphism φ_{k+1} from $M_1[p_1^{k+1}]$ into $M_2[p_2^{k+1}]$ such that $\varphi_k(p_1\nu) = \varphi_{k+1}(p_1\nu)$. By (3), the following hold.

$$\begin{split} R_2w'' &= R_2r_2w'', \ R_2v'' = R_2r_2v'', \ R_2\left(w'' + v''\right) = R_2(r_2w'' + r_2v''), \\ R_2p_1''v'' &= R_2r_2p_1''r_1 \cdot r_2v'' \ \text{ and } \ R_2(w'' + p_1''v'') = R_2(r_2w'' + r_2p_1''r_1 \cdot r_2v''). \end{split}$$

By Lemma 9, there is a unique isomorphism φ_{k+1} from $M_1[p_1^{k+1}]$ into $M_2[p_2^{k+1}]$ such that $\varphi_{k+1}(v) = r_2v''$ and $\varphi_{k+1}(p_1v) = r_2p_1''r_1$. $\varphi_{k+1}(v) = r_2p_1''r_1 \cdot r_2v'' = r_2p_1''v'' = u^- = \varphi_k(p_1v)$. Thus $\varphi_{k+1}[p_1^k] = \varphi_k$.

Remark. (1) If
$$\varphi'_{k+1}(rv) = r''\varphi'_{k+1}(v) = r''v''(r \in R_1)$$
, then
$$\varphi_{k+1}(rv) = r_2r''r_1\varphi_{k+1}(v)$$
.

(2) φ_{k+1} is inducing a ring isomorphism

$$\psi_{k+1}: R_1/R_1 p_1^{k+1} \to R_2/R_2 p_2^{k+1}$$

given by $\psi_{k+1}(r+R_1p_1^{k+1}) = r_2r''r_1 + R_2p_2^{k+1}$, and ψ_{k+1} and ψ_1, \dots, ψ_k satisfy (1).

Thus there are two classes of isomorphisms:

$$\varphi_1, \cdots, \varphi_k, \cdots; \psi_1, \cdots, \psi_k, \cdots$$

such that $\varphi_{k+1|M,\lfloor p_1^k\rfloor} = \varphi_k$ $(k=1,2,\cdots)$ and $\psi_1,\cdots,\psi_k,\cdots$ satisfy (1). Therefore there

exists a mapping φ agreeing with φ_k on $M_1[p_1^k]$ for every k. Since $M_1 = \bigcup_{k=1}^{\infty} M_1[p_1^k]$, we get an isomorphism of M_1 onto M_2 , and φ and $\psi_1, \dots, \psi_k, \dots$ satisfy the conditions of Lemma 9. Since the following diagram commutative

we get a ring isomorphism ψ of R_1^* onto R_2^* , given by

$$\psi: r^* = (r_k + R_1 p_1^k) \rightarrow (\psi_k(r_k) + R_2 p_2^k),$$

where $R_i^* = \lim_k (R_i/R_i p_i^k, \theta_k)$ is the inverse limit of the inverse system $\{R_i/R_i p_i^k, \theta_k\}$, i = 1, 2.

On the other hand, M_i can be regarded as R_i^* -module in a natural way i = 1, 2, and the following holds.

$$\varphi(r^*x) = \psi(r^*)\varphi(x)$$
 for all $r^* \in R_1^*$, all $x \in M_1$.

Thus φ is indeed a ψ -linear isomorphism of M_1 onto M_2 and is inducing the lattice isomorphism $f: fR_1x = R_2\varphi(x)$.

Conclusion If $p_1 = 0 = p_2$, then Theorem C implies Theorem B; if $R_1 = \mathbf{Z} = R_2$ and p_1 and p_2 are two prime numbers, then Theorem C implies that $p_1 = p_2$ and Theorem A.

References

- [1] Fuschs, L., Abelian Groups. Publ. House of the Acad. Sci. Budapest. 1958.
- [2] Jacobson, N., Basic Algebra I. W. H. Freeman and Company. 1980.
- [3] Kaplansky, I., Infinite Abelian Group, Ann Arbor, 1954.
- [4] Fan Yun, Modules over Group Algebras II (Representation and Homology). Lecture for graduate students. Wuhan University. 1986.
- [5] Zhou Borong, Modules Determined by Their Socies. Preprint

由子模格决定的准素模

周柏荣

(杭州大学数学系)

摘要 本文主要给出以下定理 C.

设 R_i (i=1,2)是MLPI 环 (即 R_i 是有位单元的结合环,且每个极大左理想必是主理想),元素 $p_i \in R_i$ 使得 R_i p_i 是 R_i 的极大左理想, M_i 是 p_i 一准素的 R_i 一模 [3]. 则我们有以下

定理 C 设 M_1 的终 Goldie 维数 $(=\min\{p_1^nM_1$ 的 Goldie 维数 $|n=0,1,2,\cdots\})$ < 3. 如果有子模格同构 $f:L(M_1) \simeq L(M_2)$. 则有逆向全射系 $\{R_1/R_1p_1^n \ (n \in \mathbb{N}); \theta_n\}$ 与 $\{R_2/R_2p_2^n \ (n \in \mathbb{N})\}$ 之间的同构 $\{\psi_n: R_1/R_1p_1^n \to R_2/R_2p_2^n \ (n \in \mathbb{N})\}$,其中 θ_n 和 $\theta_n' \ (n \in \mathbb{N})$ 是自然满同态, $\psi_n(n \in \mathbb{N})$ 是环同构。若令 R_1^* , R_2^* 分别是以上两逆向全射系的逆向极限环。则有环同构 $\psi: R_1^* \simeq R_2^*$ 和 M_1 到 M_2 的 ψ - 线性同构 φ , φ 诱导出 $f: fR_1 x = R_2 \varphi(x)$, $\forall x \in M_1$.

易见:

- (1) 当 $p_1 = 0 = p_2$, 且 M_1 是有限维向量空间时,由定理C即得射影几何的基本定理[2];
- (2) 当 $R_1 = \mathbf{Z} = R_2$,且 p_1 和 p_2 为素数时,由定理C即得 $p_1 = p_2$,从而得Baer关于交换p-群的相应结果^[1].