Estimation of Eigenvalues of Product of two Self-Conjugate Semi-Positive Definite Quaternions Matrices*

Cao Chongguang

(Heilongjiang University Harbin)

In this paper we gave a definition of norm of quaternion matrix, at the base of this we estimated eigenvalues of product of two self-conjugate semi-positive definite quaternions matrices, generalized and improved corresponding results for hermitian positive definite matrices in [5].

Let Q denote real quaternion field. If $x = a + bi + cj + dk \in Q$, where a, b, c, d are real numbers, we write $\overline{X} = a - bi - cj - dk$ and $N(X) = a^2 + b^2 + c^2 + d^2$. Let Q denote the set of all $m \times n$ matrices, $GL_n(Q)$ denote general linear group over Q, $SC_n(Q)$ denote the set of all $n \times n$ self-conjugate matrices. If $P \in Q^{n \times n}$, then P^* denote trasposed conjugate matrix of P. We also write $A \ge 0$ (A > 0), if A be a semi-positive definite (positive definite) self-conjugate matrix.

Lemma ! Suppose $B = \begin{pmatrix} B_1 & B_2^* \\ B_2 & B_3 \end{pmatrix} > 0$ then equation $B_1 X^* = B_2^*$ have a solution for X.

Prove since B > 0, hence $B_1 > 0$ by proposition 1 in [1]. Moreover, by [2] we known there exists a generalized unitary matrix U such that $UB_1U^* = \text{diag}(\lambda_1, \dots, \lambda_r) > 0$. Now it is easy to see that

$$\begin{pmatrix} U & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} B_1 & B_2 \\ B_2 & B_3 \end{pmatrix} \begin{pmatrix} U^* & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} UB_1U^* & UB_2^* \\ B_2U^* & B_3 \end{pmatrix} > 0.$$

Using Lemma 4 in (4), we can knew, if $\lambda_i = 0$ then all elements of the *i*th-rows of $(UB_1U^* UB_2^*)$ are zero. It is easy to see that

$$\operatorname{rank}(B_1 \mid B_2^{\bullet}) = \operatorname{rank} \left(U(B_1 \mid B_2^{\bullet}) \begin{pmatrix} U^{\bullet} & 0 \\ 0 & I \end{pmatrix}\right)$$
$$= \operatorname{rank}(UB_1U^{\bullet} \mid UB_2^{\bullet}) = \operatorname{rank}B_1$$

Evidantly this implies that equation $B_1X^{\bullet}=B_2^{\bullet}$ have a solution by $\{3\}$.

Definition | Suppose λ_1 is maximum eigenvalue of $|A^{\bullet}A|$, where $A \in Q^{m \times n}$, then $||A|| = \lambda_1^{1/2}$ is said the norm of the matrix A.

Definition 2 If $A \in Q^{n \times n}$, $X \in Q^{n \times 1}$, $\lambda \in Q$, $AX = \lambda X$ then λ is called eigenvalue

^{*} Received Apr. 4, 1988.

of A, and X is called corresponding eigenvector of A.

Lemma 2 If
$$A \in Q^{m \times n}$$
, $x \in Q^{n \times 1}$, then $||A|| = \sup_{\|x\|=1} ||Ax||$.

Prove Since $A^*A > 0$, it is easy to see that all eigenvalues λ_1 , ..., λ_n of A^*A , are nonnegative. Suppose $\lambda_1 > \cdots > \lambda_n > 0$ and corresponding eigenvectors X_1 , ..., X_n are a generalized orthonormal system. $X \in Q^{n \times 1}$, we write $X = \sum_{i=1}^n X_i a_i$, where $a_i \in Q$. Obviously, if ||X|| = 1 then we have $\sum_{i=1}^n N(a_i) = 1$. Mor-

$$||AX||^{2} = (AX)^{*}AX = X^{*}A^{*}AX = \left(\sum_{i=1}^{n} \overline{a_{i}}X_{i}^{*}\right)A^{*}A\left(\sum_{i=1}^{n} X_{i}a_{i}\right)$$

$$= \left(\sum_{i=1}^{n} \overline{a_{i}}X_{i}^{*}\right)\left(\sum_{i=1}^{n} \lambda_{i}X_{i}a_{i}\right) = \sum_{i=1}^{n} \lambda_{i}N(a_{i}) \leqslant \lambda_{1}\sum_{i=1}^{n}N(a_{1}) = \lambda_{1}$$

and if $X = X_1$ then we have $X^* A^* A X = X_1^* A^* A X_1 = \lambda_1 X_1^* X_1 = \lambda_1$, hence $\sup_{\|X\| = 1} \|AX\| = \lambda_1^{1/2} = \|A\|.$

Lemma 3 If $A \in Q^{m \times n}$, $B \in Q^{n \times p}$, then $||AB|| \le ||A|| ||B||$.

Prove We can write $||aA|| = a^2 ||A||$ for antitrary real number a. Suppose $||BX|| = a \neq 0 \ \forall \ X \in Q^{p^{\times 1}}$ and ||X|| = 1, then it is clear $||a^{-1/2}BX|| = 1$, hence $||ABX|| = ||A(a^{-1/2}BX)||a \ll a \sup_{\|y\| = 1} ||Ay|| = a ||A|| = ||BX|| ||A|| \ll ||B|| ||A||$.

Moreover, inequality ||AB|| < ||A|| ||B|| is proved.

Theorem Suppose $0 \neq A \in SC_n(Q)$, $0 \neq B \in SC_n(Q)$; λ_i and μ_i are, respectively, eigenvalues of A and B, write $|\lambda_1| > \cdots > |\lambda_n|$ and $|\mu_1| > \cdots > |\mu_n|$; λ be arbitrary eigenvalues of AB, then λ be real number and we have the following

- (i) If $A \geqslant 0$, $A \notin GL_n(Q)$ and $B \geqslant 0$, $B \notin GL_n(Q)$ then $\lambda \leqslant \lambda_1 \mu_1$.
- (ii) If A>0 or B>0 then $|\lambda| \leqslant |\lambda_1 \mu_1|$, in particular if A>0 and B>0 then $\lambda \leqslant \lambda_1 \mu_1$
- (iii) If A>0 and $B\in GL_n(Q)$, or B>0 and $A\in GL_n(Q)$ then $|\lambda|\gg |\lambda_n| |\mu_n|$ in particular if A>0 and B>0 then $\lambda\gg \lambda_n\mu_n$.

Prove (i) Suppose rank A = r < n and rank B < n, since A > 0 hence we know from (2), there is a generalized unitary matrix U such that $UAU^* = I$

$$\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$$
, where $D = \operatorname{diag}(d_1, \dots, d_r), d_i > 0 \quad \forall i = 1, \dots, r$.

Since $\begin{pmatrix} D^{-1/2} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D^{-1/2} & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$. Hence we have $\begin{pmatrix} D^{-1/2} & 0 \\ 0 & I \end{pmatrix} UAU^* \begin{pmatrix} D^{-1/2} & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, (1)

where $D^{-1/2} = \text{diag}(d_1^{-1/2}, \dots, d_r^{-1/2})$. Since $B \ge 0$ we also have

eover,

$$\begin{pmatrix} D^{1/2} & 0 \\ 0 & I \end{pmatrix} UBU^* & \begin{pmatrix} D^{1/2} & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} B_1 & B_2^* \\ B_2 & B_3 \end{pmatrix} \geqslant 0$$
 (2)

where $B_1 \in SC_r(Q)$ and $B_1 > 0$, write $L = \begin{pmatrix} I_r & 0 \\ -X_0 & I \end{pmatrix}$, where X_0 satisfies the equation $B_1 X^{\bullet} = B_2^{\bullet}$ (Lemma 1). By derict calculations, It is easy to see that

$$L(\frac{D^{1/2}}{0} \quad \frac{0}{I})UBU^{\bullet}(\frac{D^{1/2}}{0} \quad \frac{0}{I})L^{\bullet} = (\frac{B_{1}}{0} \quad \frac{0}{B_{3} - X_{0}B_{2}^{\bullet}})$$
 (3)

and

$$L^{\bullet -1} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} L^{-1} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}. \tag{4}$$

We write $U_0B_1U_0^* = \begin{pmatrix} \sum & 0 \\ 0 & 0 \end{pmatrix}$, $\Sigma = \operatorname{diag}(b_1, \dots, b_t, 0, \dots, 0)$, where $t \leqslant r$; $b_i > 0$ $(i = 1, \dots, t)$ are eigenvalues of B_i ; U_0 is a generalized unitary matrix. From formula (3) and (4), we have

$$\begin{pmatrix} U_0 & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} D^{1/2} & 0 \\ 0 & I \end{pmatrix} UBU^* \begin{pmatrix} D^{1/2} & 0 \\ 0 & I \end{pmatrix} L^* \begin{pmatrix} U_0^* & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} \Sigma & 0 \\ 0 & * \end{pmatrix}$$
 (5)

$$\begin{pmatrix} U_0 & 0 \\ 0 & I \end{pmatrix} L^{\bullet - 1} \begin{pmatrix} D^{-1/2} & 0 \\ 0 & I \end{pmatrix} \cdot U A U^* \begin{pmatrix} D^{-1/2} & 0 \\ 0 & I \end{pmatrix} L^{-1} \begin{pmatrix} U_0^{\bullet} & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$
 (6)

Both sides of (6) left multiplied by both side of (5), we obtained the result. AB similar to $\begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}$. This showed non-zero eigenvalues of AB are same as non-zero eigenvalues of B_1 , hence λ be real number. Suppose U=

$$\binom{U_1}{U_2}$$
, where $U_1 \in Q^{n \times n}$, by (2), it follows that
$$\binom{D^{-1/2}B_1D^{-1/2}}{*} * UBU^* = \binom{U_1BU_1^*}{*} *$$

Moreover, $B_1 = D^{1/2}U_1BU_1^{\bullet}D^{1/2}$. By Lemma 3, we have $\lambda < \|B_1\| < \|D^{1/2}\| \|U_1\| \|B\| \|U_1^{\bullet}\| \|D^{1/2}\| < \|D\| \|B\| = \lambda_1\mu_1$

(ii) It suffices to show that if A>0 then $|\lambda|<|\lambda_1\mu_1|$. We assme $A=U^*DU$, where D be positive diagonal matrix, U is a generalized unitary matrix by A>0. It is clear $D^{-1/2}UAU^*D^{-1/2}=I_n$. At the same time we have $D^{1/2}UBU^*D^{1/2}>0$. Moreover, there exists a generalized unitary matrix U_1 such that

$$U_1^* D^{1/2} U B U^* D^{1/2} U_1 = diag(\lambda_1', \dots, \lambda_n')$$
 (7)

and

$$U_1^{\bullet} D^{-1/2} U_i A U^{\bullet} D^{-1/2} U_i = I_n . {8}$$

Both sides of (8) left multiplied by both side of (7), it follows that λ'_1 , ..., λ'_n are eigenvalues of AB, hence

$$|\lambda| < \max_{i} \{ |\lambda_{i}'| \} = \|U_{1}^{*} D^{1/2} U B U^{*} D^{1/2} U_{1} \| < \|D\| \|B\| = |\lambda_{1}| |\mu_{1}| = \lambda_{1} |\mu_{1}|$$

The second statement is clear.

(iii) In this case, since $(AB)^{-1} = B^{-1}|A^{-1}$, hence $|\lambda^{-1}| \le |\lambda_n^{-1}| |\mu_n^{-1}|$ by the results of (ii), it follows that $|\lambda| \ge |\lambda_n| |\mu_n|$. Last statement is clear.

Remark | When A and B are hermition positive definite matrices, the result in [5] is $\frac{2}{n}(\lambda_n^2 + \mu_n^2)^{-1}\lambda_n^2\mu_n^2 < \lambda < \frac{n}{2}(\lambda_1^2 + \mu_1^2)$, but our theorem is better than that in [5]. For example suppose n = 20, $\lambda_1 = 1$, $\mu_1 = 10$, $\lambda_n = 0.1$, $\mu_n = 1$ we hat have $\frac{0.001}{1.01} < \lambda < 1010$ by [5], however we have $0.1 < \lambda < 10$ by our theorem.

Remark 2 If
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ then $AB = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. By

direct calculation it is easy to see that minimal positive eigenvalue of A, B, AB, are 2,1,1 and obviously $1 \ge 1 \times 2$. This fact shown in case (i) of theorem we cannot derive $\lambda \ge \lambda_0 \mu_0$, where λ_0 and μ_0 are minimal positive eigenvalue of A and B.

References

- [1] Xie Bangjie, Jilin Daxue Ziran Kexue Xuebao 1980, No.2, 19-34. (in chinese)
- [2] Xie Bangjie, Jilin Daxue Ziran Kexue Xuebao 1980, No.3, 1-33. (in chinese)
- [3] Xie Bangjie, Abstract Algebra, Shanghai Science and Technology Press, 1982. (in chiness)
- [4] Cao Chongguang, J. Math. Research and Exposition 1988, No.3 346-348. (in chinese)
- [5] Sha Hu-yuh, Linear Alg. Appl., 73(1986), 147-150.

两个四元数自共轭半正定矩阵乘积的特征估计

曹重光

(黑龙江大学,哈尔滨)

摘要 设 A和 B均非 0 的 n 阶实四元数 自共轭矩阵, λ_i 及 μ_i 分别为共特征值($i=1,\cdots,n$),且规定 $|\lambda_1| \geqslant |\lambda_2| \geqslant \cdots \geqslant |\lambda_n|$, $|\mu_1| \geqslant |\mu_2| \geqslant \cdots \geqslant |\mu_n|$, 又 λ 为 AB之任意特征值,则 λ 为实数,且(1)若 $A \geqslant 0$, $A \in GL_n(Q)$, $B \geqslant 0$, $B \in GL_n(Q)$,则 $\lambda < \lambda_1 \mu_1$; (2)若 A > 0 或 B > 0,则 $|\lambda| \leqslant |\lambda_1 \mu_1|$,特别当 A > 0 且 B > 0 时有 $\lambda < \lambda_1 \mu_1$; (3) 若 A > 0, $B \in GL_n(Q)$,或 B > 0, $A \in GL_n(Q)$ 则 $|\lambda| \geqslant |\lambda_n \mu_n|$,特别当 A > 0 且 B > 0 时有 $\lambda > 0$ 时有 $\lambda > \lambda_n \mu_n$.