A Condition for a Subdirectly Irreducible Ring to be a Division Ring

Wang Yu

(Siping Normal College)

Let R be an associative ring, H is the intersection of all non-zero ideals of R. If $H \neq (0)$, R is said to be subdirectly irreducible.

In this paper, we give a condition for a subdirectly irreducible ring to be a division ring. As the conclusion, we have the following theorem.

Theorem let R be a subdirectly irreducible ring with a minimal one-sided ideal, and if H has no non-zero nilpotent elements, then R is a division ring.

The following three lemmas (see [1]) is needed for the proof of the theo rem:

Lemma | If R has a non-zero nilpotent one-sided ideal, then R has a no non-zero nilpotent ideal.

Lemma 2 If I is any minimal one-sided ideal of R, then $I^2 = (0)$, or I has an idempotent.

Lemma 3 If R has no non-zero nilpotent one-sided ideals, and if e is an idempotent element of R, that is $e = e^2 \pm 0$, then the following condition are equivalent.

- (1) eR is a minimal right ideal of R.
- (2) Re is a minimal left ideal of R.
- (3) eRe is a division ring.

Proof of theorem: If R has a non-zero nilpotent one-sided ideal, by lemma 1, then R has a non-zero nilpotent ideal I. That is $I^n = (0)$, where n > 1 a fixed integer, as $H \subseteq I$, hence $H^n = (0)$, a contradiction, therefore R has no non-zero nilpotent one-sided ideals.

Suppose $L\neq(0)$ is a minimal one-sided ideal of R, by lemma 2, we have $e=e^2\neq 0$, $e\in L$. By lemma 3, then eR is a minimal right ideal of R, Re is a minimal left ideal of R, and eRe is a division ring. Let D be the left annihil lator of H in R, if eH=(0), then $e\in D$, thus D is a non-zero ideal of R, hence $H\subseteq D$. Thus $H^2\subseteq DH=(0)$, a contradiction, therefore $0\neq eH\subseteq eR$. Since eR is a minimal right ideal of R, then eH=eR, hence $e\in eR=eH\subseteq H$.

^{*} Received Jan. 15, 1988.

If xe=0 where $x \in \mathbb{R}$, then $(e\mathbb{R}x)^2 = (0)$. Since $e\mathbb{R}x \subseteq \mathbb{H}$, H has no non-zero nilpotent elements, thus $e\mathbb{R}x = (0)$. Hence e(x) = (0), where (x) is the ideal generated by x in \mathbb{R} . If $x \neq 0$, we have $\mathbb{H}\subseteq (x)$, thus $e\mathbb{H}=(0)$, a contradiction, hence x=0, thus e is not a right zero-divisor of \mathbb{R} . For $r \in \mathbb{R}$ then (re-r)e=0, thus e = 0, hence e is the right identity element of \mathbb{R} .

As the same way, e is also the left identity element of R. Thus e is the identity element of R, hence R = eRe is a division ring. This proves the theorem.

Corollary | [2] If R is a subdirectly irreducible ring having no-zero nilpotent elements and if the class of left ideals of R in H satisfies the descending chain condition, then R is a division ring.

Corollary 2 [3] If R is a subdirectly irreducible ring having no non-zero nilpotent elements and if the class of left ideals of R in H satisfies both the descending and ascending chain conditions, then R is a division ring.

Corollary 3 [4] An commutative subdirectly irreducible ring having no non-zero nilpotent elements is a field.

References

- [1] Liu ShaoXue, Rings and algebras, Science Press 1983.
- [2] Guo YuanChun, Acta Scientiarum Naturalium Universitatis Ji Linensis 3 (1983) 7-9.
- (3) Fu ChangLin, Journal of Mathematical Research and Exposition 2 (1983) 17-22.
- [4] G Birkhoff, Bulletin of the American Math Soc Vol 50 (1944) 764-768.

亚直不可约环是体的条件

王 宇 (四平师范学院数学系)

摘要 设 R 是结合环,H 是 R 中全部非零理想之交,若 $H \neq (0)$,则称 R 是亚直不可约环。本文研究了亚直不可约环是体的条件,得到:

定理 R 是具有极小单侧理想的亚直不可约环,且H中无非零幂零元,则R 是体。