Uniqueness of the Solution to the Operator Equation $f(A) = A^*$

Tao Zhiguang

(Dept. Math., Guangxi University, Nanning)

Abstract Let H be a complex Hilbert space, and let $f(z) = \sum_{n=0}^{\infty} B_n z^n$, $z \in \Delta = \{ z : |z| < 1 \}$, where $\{ B_n \}$ is a sequence of normal operators on H comm muting pairwise, such that ||f(z)|| < 1 for $z \in \Delta$ and $1 \in \sigma(B_1)$. If $\exists T \in X = \{ A \in \mathcal{B} \}$ (H): A commutes with every B_n and $\sigma(A) \subset \Delta \}$ with f(T) = T, then T is the unique one in X satisfying the equation, and T must be normal.

I. Notations

In general, we follow (1) or (2) for notation. For the convience of the reader, we recall that, as usual, $\mathcal{B}(H)$ denotes the C^* -algebra consisting of all bounded linear operators on a complex Hilbert space H. $\mathcal{N}_H(\Delta)$ will indicate the set of analytic operator-valued functions f from the open unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ into $\mathcal{B}(H)$ such that f takes on the form

$$f(z) = \sum_{n=0}^{\infty} B_n z^n$$
 for $z \in \Delta$

where $\{B_n\}_{n=0}^{\infty}$ is a sequence of normal operators commuting pairwise and the series converges in the norm topology. For $T \in \mathcal{B}(H)$, T commuting with f is meant Tf(z) = f(z) T for all z in Δ . If $\sigma(T)$ (the spectrum of T) is contained

in
$$\Delta$$
, $f(T)$ is defined by $f(T) = \sum_{n=0}^{\infty} B_n T^n$.

In this note, we obtain an improvement of the relative theorem in (2) on the uniqueness of the solution to the operator equation f(A) = A.

2. Main result

Theorem.Let H be a complex Hilbert space and $f \in \mathcal{N}_H(\Delta)$. Suppose f satisfies the following conditions:

(i).
$$||f(z)|| < 1$$
 for $z \in \Delta = \{z : |z| < 1\}$; (ii). $1 \in \sigma(f'(0))$;

(iii). There exists a T in $X = \{A \in \mathcal{B}(H) : A \text{ commutes with } f \text{ and } \sigma(A) \subset \Delta \}$ such that f(T) = T.

Then T is the unique solution in X to the operator equation f(A) = A. Moreover, T must be normal.

^{*} Received Feb. 10, 1988

Proof Suppose $f(z) = \sum_{n=0}^{\infty} B_n z^n$ for $z \in \Delta$. Then by the hypothesis, $\{B_n\}$ is a

sequence of normal operators commuting pairwise. Let \mathcal{B} denote the C^* -algebra generated by $\{I, B_0, B_1, B_2, \cdots\}$. We show, first, that if there exists a B in \mathcal{B} such that ||B|| < 1 and f(B) = B, then B = T. Define for z in Δ

$$\psi(z) = (z + B) (I + B^*z)^{-1}, \ \varphi(z) = (z - B) (I - B^*z)^{-1}, \ F(z) = \varphi \circ f \circ \psi(z).$$

By Lemma 5.2 in [1], we have $\|\psi(z)\| < 1$, $\|\varphi(z)\| < 1$ for z in Δ . Since B commutes with f, it follows from Theorem 3.1 in [1] that for every z in Δ

$$|| f_{\circ} \psi(z) || = || f(\psi(z)) || < 1$$

and

$$||F(z)|| = ||\varphi(f(\psi(z)))|| < 1.$$

Clearly, F(0) = 0. Therefore F takes on the form F(z) = zh(z) where h is an element of $\mathcal{N}_H(\Delta)$ and $\|h(z)\| \le 1$ for all z in Δ . We claim that 1 is not in $\sigma(F(0))$. Let \mathfrak{M} be the maximal ideal space of \mathcal{B} . If not so, then there exists an $m \in \mathfrak{M}$ such that 1 = F'(0)(m) = h(0)(m) = 1. Since h(z)(m) is a scalar function analytic on Δ and $|h(z)(m)| \le ||h(z)|| \le 1$, it follows from the maximum modulus principle that h(z)(m) = 1, and hence F(z)(m) = z for $z \in \Delta$. By the Gelfand representation theorem for commutative C^* -algebras or Lemma 3 in (2), we have

$$F(z)(m) = \varphi \circ f \circ \psi(z)(m) = f(z)(m)$$

and hence f(z)(m) = z, in particular, f'(0)(m) = 1, which contradicts the hypothesis: $1 \in \sigma(f'(0))$. Thus $1 \in \sigma(F'(0))$. Now we show B = T. An application of theorem 4 in [2] shows that in $X_1 = \{A \in \mathcal{B}(H) : A \text{ commutes with } F \text{ and } \sigma(A) \subset \Delta \}$, the operator equation F(A) = A has no solution other than A = 0. Put $S = (T - B)(I - B * T)^{-1}$. It is clear that S is in X_1 , and by Lemma 2.5 in [1],

$$F(S) = \varphi \circ f \circ \psi(s) = \varphi \circ f(T) = \varphi(T) = S$$
.

Thus S = 0, i.e., B = T.

It remains to show the existence of a B in \mathcal{B} so that f(B) = B. Since T co commutes with f, or $TB_n = B_n T$ for all $n = 0, 1, 2, \cdots$, we have by Fuglede's theo rem $TB_n^* = B_n^* T$ for $n = 0, 1, 2, \cdots$ Let \mathcal{B}_1 represent the commutative Banach algeb bra generated by $\{I, T, B_n, B_n^*, n = 0, 1, 2, \cdots\}$, and \mathfrak{M}_1 the maximal space of \mathcal{B}_1 Since f(T) = T, it follows from Lemma 3 in $\{2\}$ that

$$T(M) = \sum_{n=0}^{\infty} B_n(M) T^n(M)$$
 for $M \in \mathfrak{M}_1$.

It is well-known that $\sigma(B_n) = \sigma(B_n, \mathcal{B})$, and consequently

$$\sigma(B_n) = \sigma(B_n, \mathcal{B}_1) = \sigma(B_n, \mathcal{B})$$
 for all $n = 0, 1, 2, \dots$

where $\sigma(B_n, \mathcal{B})$ and $\sigma(B_n, \mathcal{B}_1)$ denote the spectrum of B_n relative to \mathcal{B} and \mathcal{B}_1 respectively. Define a mapping $\tau: \mathfrak{M}_1 \mapsto \mathfrak{M}$ by $\tau(M) = M \cap \mathcal{B}$. It is readily seen

that $B(M) = B(\tau(M))$ for any M in \mathfrak{M}_1 and any B in \mathfrak{B} , and hence τ is continuous. We claim that τ is a one-to-one mapping of \mathfrak{M}_1 onto \mathfrak{M} . Assume, to the contrary, that there exist two distinct members M and M' in \mathfrak{M}_1 such that B(M) = B(M') for all B in \mathfrak{B} . Then $T(M) \neq T(M')$ for otherwise M and M' m must be one and the same. Write $a_n = B_n(M) = B_n(M')$ ($\forall n \geq 0$), and put

$$g(z) = \sum_{n=0}^{\infty} a_n z^n$$
 for $z \in \Delta$.

Now that g is a scalar function analytic on Δ with $|g(z)| = |f(z)(M)| < \|f(z)\| < 1$, and $\lambda_1 = T(M)$ and $\lambda_2 = T(M')$ are different fixed points of g in Δ , we derive from the maximum modulus principle that g is of the form g(z) = z. Thus $1 = B_1(M) \in \sigma(B_1)$, i.e., $1 \in \sigma(f'(0))$, a contradiction. Therefore τ is really a one-to-one mapping. Next, we check that τ is surjective and hence homeomor phic. Suppose this is false, namely, $\tau(\mathfrak{M}_1) \neq \mathfrak{M}$. Since \mathfrak{M}_1 is a compact Hausdorff space and hence $\tau(\mathfrak{M}_1)$ is compact in \mathfrak{M} , it follows from the Gelfand representation theorem that there exists an element B in \mathcal{B} such that $B \neq 0$, but $B(\tau(M)) = 0$ for all M in \mathfrak{M}_1 . Observe that $B(\tau(M)) = B(M)$ for every M in \mathfrak{M}_1 and that $\sigma(B, \mathfrak{F}_1) = \sigma(B)$. Thus $\sigma(B) = \{0\}$. By normality of B, we have B = 0, a contadiction. Therefore τ is a homeomorphism of \mathfrak{M}_1 onto \mathfrak{M} . Then $T(\tau^{-1}(m))$ is a continuous function on \mathfrak{M} , and by the Gelfand representation theorem for commutative C^* -algebras there exists an element B in \mathcal{B} such that $B(m) = T(\tau^{-1}(m))$ for m in \mathfrak{M} . Applying Lemma 3 in $\{2\}$, we obtain for $M \in \mathfrak{M}_1$

 $B(M) = T(M) = f(T)(M) = \sum_{n=0}^{\infty} B_n(M) T^n(M) = \sum_{n=0}^{\infty} B_n(M) B^n(M) = f(B)(M).$ Then B = f(B) follows from the fact that B and f(B) are both members of \mathcal{B} . The proof is complete.

Corollary | Let f be a scalar function analytic on $\Delta = \{z : |z| < 1\}$ with |f(z)| < 1 for z in Δ , and let $X = \{A \in \mathcal{B}(H) : \sigma(A) \subset \Delta\}$. Then

- (i). There exists a unique operator T in X such that f(T) = T if and only if $f'(0) \neq 1$ and f has a unique fixed point λ_0 in Δ . In this case, $T = \lambda_0 I$.
- (ii) There exist two distinct operators S and T in X such that f(s) = s, f(T) = T if and only if f(z) = z for all z in Δ .

Proof Clear.

For the meaning of the relative notations in the following corollary, the reader is referred to (1)(296,305).

Corollary 2 Let $\Pi = \{z : \text{Re}z > 0\}$. Suppose $f \in \mathcal{N}_H(\Pi)$ satisfying the following conditions: (a). $f^*(z) + f(z) \geqslant 0$ for each z in Π , where $f^*(z)$ is the adjoint operator of f(z); (b). (f(1) + I) - 4f'(1) is invertible. If there exists a an operator T in $X = \{A \in \mathcal{B}(H) : A \text{ commutes with } f \text{ and } \sigma(A) \subset \Pi\}$ such that f(T)

= T, then T is the unique solution in X to the operator equation $f(A) = A \cdot Mo$ reover, T must be normal.

Proof. Let $\varphi(u) = (1+u)(1-u)^{-1}$ for $u \in \Delta$. Noting that $\varphi(\Delta) = \Pi$, one may see that $f(\varphi(u))$ is analytic on Δ . The assumption that f(z) is normal and $f^*(z) + f(z) \geqslant 0$ on Π implies that $f(\varphi(u)) + I$ is invertible for each u in Δ . Define

$$F(u) = (f(\varphi(u)) - I)(f(\varphi(u)) + I)^{-1}$$
 for $u \in \Delta$.

By Lemmas 2.1, 2.3, 5.1 in [1], one may easily verify that F satisfies all the requirements of the above theorem and $S = (T - I) (T + I)^{-1}$ is a solution to the equation F(A) = A in $X_1 = \{A \in B(H) : \sigma(A) \subset \Delta \text{ and } A \text{ commutes with } F\}$. Since S is the only solution in X_1 to the equation F(A) = A and is normal by the theorem above, the desired assertion follows.

Remark In general, a function $f \in \mathcal{N}_H(\Delta)$ with |f(z)| < 1 for z in Δ and $1 \in \sigma(f'(0))$ may possibly have a unique operator T in $X = \{A \in \mathcal{B} \mid (H) : A \text{ commutes}$ with f and $\sigma(T) \subset \Delta\}$ such that f(T) = T.

Example Let H be a complex Hilbert space with a orthonormal basis $\{e_n: n = 1, 2, \dots\}$, and let $\{E_n\}$ be the sequence of projections defined by

$$E_n(x) = \xi_n e_n$$
 for $x = \sum_{k=1}^{\infty} \xi_k e_k \in H$.

Put

$$f(z) = \sum_{n=2}^{\infty} (1 - \frac{1}{n+1}) E_n z + \frac{1}{2} E_1 z^2 \text{ for } z \in \Delta.$$

Write $B = \sum_{n=2}^{\infty} (1 - \frac{1}{n+1}) E_n$. It is clear that ||f(z)|| < 1 and f'(0) = B, $1 \in \sigma(B)$.

Now we check that T=0 is the unique operator in X satisfying the operator equation f(A) = A. Suppose f(T) = T, that is

$$T = \frac{1}{2}E_1T^2 + BT.$$

Since $TE_1 = E_1T$, we have

 $Te_1 = \frac{1}{2}E_1T^2e_1 + BTE_1e_1 = \frac{1}{2}T^2e_1 + BE_1Te_1 = \frac{1}{2}T^2e_1$, or $T^2e_1 = 2Te_1$. By induction, one may infer that $T^ne_1 = 2^{n-1}Te_1$ for all positive integer n. Assume $||Te_1|| \ge 0$. Then

 $2^{\frac{n-1}{n}} \|Te_1\|^{\frac{1}{n}} \leq \|T^n\|^{\frac{1}{n}}.$

By letting $n \to \infty$, we obtain $2 \le \lim \|T^n\|^{\frac{n}{n}} \le 1$, a contradiction. Thus $Te_1 = 0$. As for i > 1, by the hypothesis: TB = BT, we have

$$Te_{i} = BTe_{i} = TBe_{i} = (1 - \frac{1}{i+1})Te_{i}$$

and hence $Te_i = 0$. Thus T = 0.

Acknowledgments: The author would like to express his thanks to Professor Zhang Yingnan for valuable suggestions.

References

- [1] Tao Z.G.: J. Math. Anal. Appl. 103 (1984), 293-320.
- (2) Tao Z.G., Acta Math. Sinica, New ser. 1(1985), 327-334.

关于算子方程f(A)=A解的唯一性

陶 志 光 (广西大学数学系,南宁)

摘要 设H是复Hilbert空间,又设 $f(z) = \sum_{n=0}^{\infty} B_n z^n$, $z \in \Delta = \{z : |z| < 1\}$, 其中 $\{B_n\}$

是H上一列两两交换的正常算子,满足条件:级数按范数收敛, $\|f(z)\| < 1$ 在 Δ 上处处成立,且 $1 \in \sigma(B_1)$ 又记 $X = \{A \in \mathcal{B}(H) : \sigma(A) \subset \Delta$ 且 A 与每个 B_n 交换 $\}$ 。本文证明了,若有 $T \in X$ 使得 f(T) = T,则 T 是X 中满足所论方程的唯一元素。此外,T 必须是正常算子。