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{ . Introduction

Let T be a triangle arbitrarily given with points T, »T,, T, as its vertices. It
is well known that an arbitrary point P in the plane on which triangle T lies
can be expressed by its barycentric coordinates (u, »,w) with respect to T and
that u+p+w=1 is satisfied. We identify P with its barycentric coordinates and
write P= (u,p,w). If PeT, we have further restrictions 0<lw,z, w<l.

Suppose f(P) is an arbitrary function defined on T, then we define the Ber-
nstein polynomials of degree n over T associated with f by

B'(f,p):= Zl:‘ fli/n, j/n, k/m) B (P) (1)
i+j+k=n
where B; . (P): =—i—'n—!ﬁk~uw’u/‘ are Bernstein basic functions.
Bernstein polynomial B"(f, P) preserves the properties of function f(f) to a
(13

\considerable degree , Recently B. M. Brown proved the following result for
univariate Bernstein polynomials; If feLip, 1, 0<A<1,then for all n>1, B"(f, x)
¢Lip A. The purpose of this paper is to prove the similar result for Bernstein
polynomials defined over a triangle. In the following, let T:={(x, y):x>0,y>0,
x+y<1} be a standard triangle. At ff_rst, we give the following

Definition A function f(P) is Lirschitz continuous. of order 4, 0<{A<] on
triangle T, if there exists constant A0 such that for every pair points P, BT,
we have ' '

|FCP) ~ f(P) |<4| P~ P (2)

written by f(P)eLip, 1. Here the constant 4, whi.ch depends upon f and A4,
denotes Euclidean norm. o

is known as Lipschitz constant of f and |- |

2 . ‘Main Theorem
Before stating the main theorem, we need to point out two facts. If Ij= (i,
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v,,w)=uT +pT,+wT,, i=1,2.8ince (u,—u,)+(v,~2) + (w,—w,) = 0, without
loss of generality, we may suppose (uy—u ) (v,~2,) >0, using w,-w, =~ (u,-u,)
-(»,—- 1), we have
1P~ P 2= | Gy = u) (T, = Ty) + (0, - 0, XT, - Ty |12
< (Cuy—u) hy+ (0,-0)h) <2 | P,— B, ||* (3)
here h,= |T,-T,|, &= |T,-T,|.
The other fact is that when f(P) is a convex function over T, then we have
B(f,P)>B"(f,P), n=1,2,+.
Therefore, when f(P) is a coﬂcave function we have
B"(f, ) f(P) (4)
for all n>1, Now we prove the fbllowing main
Theorem Suppose f(j’) eLip, i, 0<<A<1, then for all n>1, we have
B"(f,P) eLip ., 4. '
Proof We consider the following two cases:
Case 1. Suppose U, >u, v,>0,.
Since u+p+w= 1, we can think of B"(f,P) as functions of variables u and
v. Then from (1), we have

. L n n-s n 5t _ _ n=s-1
BB = X T Ayracansmnr (14 0y) (5)

here f, ,:= f(s/n,t/n). Note that

. s N . Py .
Uy, = Iz;o(,‘; ) uy(u,— ul)”’;:;; ‘(j’ ) o] (0= 0" (8)

Combining (5) and ( 6), after inverting the order of summation and writing
s—i=k,t-j=r, then we have

" Sy itk _j+r nl e
BLR= S D ana-i- =l (P

i j k : ——j-r—k
cu v (uy—u) (0,0, Y (1 —uy—0,)" 777,

In the other hand, by definition

. - i1 _ A=) _ n|
. B (f, Pl) 1+j2<,, l}ju!'gl(l u, Ul) i!j! (n—i"j)!
Using
| A= =0)" =k+r<§:—1 -J (uy = ) (0, =2, (1= uy~0,))" 777
. (n—i-j
kirt(n—i—-j—-k-r) ’
we get
n — : . . n!
B (f’,Pl) _1+j+§-r<nf('/n’ }/n) i!j! k!r! (n_i_j_k._ r)!
o] (uy— u) (0, - 0,) (1 — uy—p, 3 i ks 8)

Since f(P)elip 4 and formulas (3), (4), (7), (8), we know that
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n i n!
|B"(f, B)-B'(f, P) |<Ak+;<n(khz/”+’h!/”) kirl(n—k-

n-k-r

<y~ u) (b, -0 (1 - (uy—u) — (0, ,))

= A-B"( (uhy+oh))*s u,— u, ,0,- 0,)

<A (uy= w) hy+ (0,-0)h)"

<Az |p-R|H=s2"4|B-R]|". (9)
Therefore the theorem is proved for the case 1. For the case of u,<u,,5,<v,,
the similar argument shows that the theorem is also valid.

Case 2. Suppose u,>u ,0,<y . _

In this case, either w,>w, or w,<w,, without loss of generality, we may
suppose w,>w,. Because of symmetry, we can think of ‘B"(f, P) as functions
of variables ¥ and w, then this case is reduced to the case 1, we still have

|B"(f, P)- B"(f, P) |</2' A B-P, | - (10)
For the case of u,<u,,v,>v, (10) is also valid. '

Summerizing the case 1 and 2, the theorem is confirmed.

At last, we would like to make some remarks:

1 . The constant ./2* 4 is the best in a sense. Let

f(P) = f(x, p)=(x*+ yH'2,
It is easy to see that ’

lfCBy- f(R) I<|P,-P, |*,
that is f(P)e¢Lip,A and A=1.For n=1,

’ B'(fyx,y)=x+y.
Take (x,y)=(/2,1/2), since |[(1/2 1/2) - (0,0 |=1//2, therefore
IB'(f,1/2.1/2) =B (£,0,0 ) |=1=42" [ (1/2,1/2) - (0,0 |*,

that is the inequlity in the theorem becomes equlity.

2 . If T is"an arbitrary acute or rectangular triangle, then the theorem is
still valid .

3.If T is an arbitrary obtuse triangle, there is no constant C such that for
all » and any T,

B"(f, p) €Lip 4
holds. The reason is that the formula (3) may not hold in this case, A cdun—
terexample is as following.

Let T be a triangle with (9,0), (2m,0), (m, 1) as its vertices and f(P) be
as above,

Take P, = (m,1), p,= (m,0), in this case |[P2~P,||=1 and B’(f, 1>1)=(1+m2)m,
B'(f,p) =2"m" /2 therefore

|B'(f,P) ~B'(f,P|=(1+mH2=2'm*/25m* (1 - 7 )—> co.
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