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| . Introduction

The generalizations of usual discrete Fourier transform (DFT) are all defi-
ned on a commutative ring. In [ 1] and [ 2], a generalization of DFT on a non-
commutative ring (FGFT) is given and is applied to some fast linear computa-
tion problems. In this paper, paraliel computation efficiencies for these fast
algorithms have been given without being proved. These computing problems have
very good parallelism. But it is difficult to further decrease complexities in this
paper, The parallel steps mentioned in this paper are all times of four arithme-
tic operations, and the orders & df matrix mentioned are all much smaller than

n.
2 . Paralle! Algorithm for FGFT
2xi 2xi -
Let a~=e’v or ¢e=e " for short when do not being confused, where i=/-1.

Let E be a diagonal matrix of k& order:
E=diag (&6, ¢)
where k& is a natural number.
Definition | Given a k-th order matrix sequence (real or complex) A(0),
A(1),+++,A(N - 1), the generalization Fourier transfrom is given by

N-1 .
X(j)=Y_E'"A(n), (j=0,~,N-1). 1)
n=0
with invevrse
lN"l _.';
An)y =3 E7"X(j) (n=0,,N=-1). (2)-
N i

where E'=¢'I. When k=1, the generalized Fourier transfrom is usual discrete
Fourier transfrom,
Theorem | The parallel steps of computing the generalized Fourier trans-

from (1) and its inverse (2) are not more than O(logN) when using k* Nproces-
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SOrs.

3 . Parallel Algorithm for Matrix Sequence Convolution

Definition 2 Given two k order matrix sequences A(i) and B(i) for i=9,
«s», N -1, and then extended them, i.e.
A(i+uN)=A(i), B+ uN)=B()
where i=0,+*, N-1 and u is an arbitrary integer, the convolution of matrix

sequences A(i) and B(i) is gived by
N-1
C(j)=Y_AG)B(—-i) (j=0,>,N-1) (3)
=0

If we use usual algorithm, the parallel steps of computing (3 ) are O(logkn)
when using k’N? processors. If we use FGFT, we can prove following theorem

Theorem 2 It needs O(logkN) parallel steps to compute (3 ), the convo-
lutiou of matrix sequences A(i) and B(i) for i=(, *+, N-1, when using kK*N
processors.

According to [ 3], we can further get following results.

Corollary | It needs O(logkN) parallel steps to compute (3 ) when using
3 .
lk—ogNT processors.
Corollary 2 It needs O(logkN) parallel steps to compute (3 ) when using
k2.81

—lé*ék“ processors.

4 . The Partitioned Cyclical Parallel Algorithm

Definition 3 Let A4 ,,i=0,+,n—1 be matrices of k order, partitioned cyclical

matrix is given by following nk-th order matrix:

A, A 4,
ACk,n) = A4,, A, > A4, (4)
Al A2 voe AO

Usually, k<<n. If Ak, n) and B(k, n) are all partitioned cyclical matrices
like (4), computing A(k, n) » B(k,n) by applying usual inner product algorithm
needs logkn steps and k’n’ processors. In this paper, we get:

Theorem 3 It needs O(logkn) parallel steps at most to compute the product
of two partitioned cyclical matrices like (4 ) when using k’n processors.

If ACk,n) is inverse, it needs O(k*n*) processors and O(log’kn) steps to
compute inverse of A(k, n) by applying Gsanky equivalence Theorem %, In this
paper, we get

Theorem 4 It needs O(logn+log’k) parallel steps at most to compute inverse
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of partitioned cyclical matrix A(k, n) like (4) when using k*n processors.
§ Parallel Algorithm for Partitioned Ttriangular Matrix

Definition 4 Let A4, be k-th order matrix for i=(,«,n~1. Partitioned T -
formed (upper) triangular matrix is given by nk-th order matrix
A4, A, A4, ,
Atkyny=| U Ay 4, (5)

®es 000000 scsscnsevse

00 A,

Theorem 5 It needs O(logkn) parallel steps at most to compute the product
A(k, n) «» B(k, n) of two partitioned T-formed (upper) trianguler matrices like (5)
when using k’N processors.

Theorem ¢ It needs 0(log2kn) parallel steps at most to compute inverse of

A(k,n) like (5) when using k’(n+k) processors,
6 . Parallel Algorithm for Polynomial Matrix

Definition ¢ Polynomial matrix is a rectangle matrix whose elements are
polynomials of 4, i.e.
AL =(a, (1), = @P 1" +alP A" + et all)

i:l,n-’m’ k:l’n-’n.

mn

where u4 is maxmum number of degrees of polynomial a, (2).

If let

A= @), (G=0, 0.
we can get
AQQ) =AM+ AN T+ v A, A+ A,

Now, we will give parallel complexity upper bound for computing product of
two above mentioned polynomial matrices. - ]

Theorem 7 Given two polynomials of scalar variable x whose coefficients

are M-th order matrices:
P(x)=Y A)x', Q(x) =3 B(j)x’
i=0 7i=0

then computing P(x)* Q(x) needs O(logM N) parallel steps and M*N proces-
sors at most, where N is a minimum integer satisfing N=2">n+m-1.
Let

ACX) =3 A2, B =3 B 1.
’ i=0 Jj=0

where /Tl and Ei are all matrices of k order. If A(1) is regular, i.e. A #0, we

consider parallel algorithm for computiong left quotient Q(A)and left remainder
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R(4) of dividing B(A) by A(1):
B(l)=Q(A)AA)+ R(A).

Thcorem 8 Let n=2m-1. It needs O(log’km) parallel steps at most when
using K(m+k) processors to compute left quotient and left remainder of diving
B(1) by AGL).

When k=1, we will get parallal complexity upper bound on division of
monadic polynomial .

7 . Remarks

If the order M and length N of matrix sequence in Theorem 2 satisfy follo-
wing inequality;
M<logN .
then numbers of processor can be decreased to M>N and parallel steps to

O(log N). So all results in this paper can be improved similarly.
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