Some Nonlinear Elliptic Problems with Linear Part at Resonance* Yao Qingliu Ma Ruyun (Northwestern Teacher's University, Lanzhou) ## | . Introduction Let $\Omega \subset \mathbb{R}^n$ be a bounded regular domain, $\{\lambda_i\}_1^{\infty}$ be the sequence of the eigenvalues of the operator $-\Delta$ on $H_0^1(\Omega)$. We suppose always that $k \ge 1$ is fixed, φ is a eigenfunc ion corresponding to λ_k with $\int_{\Omega} \varphi^2 = 1$, and $h \in H^{-1}(\Omega)$ such that $\int_{\Omega} h \varphi = 0$. Consider the following problem $$\begin{cases} -\Delta u - \lambda_k u + g(x, u) = t\varphi + h & \text{in } \Omega \\ u = 0 & \text{on } \Omega \end{cases}$$ (1.1) In past several years, many results on this problem are obtained in the case of k=1 (see [3], [4]). In this paper, we consider the case of k>1 by use of the technique of connected set and the continuum theory for o-epi maps (see [6]), several existence and multiplicity results for (P_t) are established when k>1 and λ_k is simple. Our main results are as follows ### Theorem | Suppose (g_1) . g(x, s) = g(s), $\forall x \in \Omega$ and $g: \mathbb{R} \to \mathbb{R}$ is a continuous periodic function with period T and periodic primitive. (H_3) . k>1 and λ_k is simple. $$(H'_4)$$. $\lambda_{k-1} < \lambda_k + g'(s) < \lambda_{k+1}$, $k > 1$, const $< \lambda_1 + g'(s) < \lambda_2$. Then for every h there are two numbers τ_1 , τ_2 : $\tau_1 < 0 < \tau_2$ such that - (i). (P_t) has a solution if and only if $t \in [\tau_1, \tau_2]$. - (ii). If $t \in (\tau_1, \tau_2) \{0\}$, then (\mathbf{P}_t) has at least two solutions. **Remark** The same result was given in [1, theorem 2] for k=1. We extend this result to the case of k>1 with additional condition (H'_4) . ### Theorem 2 Suppose (H_2) $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is measurable in x for every $s \in \mathbb{R}$, and $g \in \mathbb{C}^1$ in s a.e.on Ω . ^{*} Received Jan. 16, 1988. (H_3) k>1 and λ_k is simple. $$(\mathbf{H}_{4}') \quad \lambda_{k-1} \leq \lambda_{k} + g'(x, s) \leq \lambda_{k+1}, \quad k > 1$$ $$\operatorname{const} \leq \lambda_{1} + g'(x, s) \leq \lambda_{2}.$$ where $g'(x, s) = (\partial/\partial s)g(x, s)$. $$(\mathbf{H}_s)^{-1} \sup\{|g(x,s)|: (x,s) \in \Omega \times \mathbf{R}\} = \mathbf{d} < +\infty$$ If for every $x \in \Omega$, $$\lim_{s\to+\infty} sg(x, s) = \mu > 0.$$ Then for every $h \in H_0^1$, there are two numbers $\tau_1, \tau_2 : \tau_1 < 0 < \tau_2$ such that - (i) (P_t) has solutions if and only if $t \in [\tau_1, \tau_2]$. - (ii) If $t \in (\tau_1, \tau_2) \{0\}$, then (P₁) has at least two distinct solutions. Remark The same result was showed in [4, theorem 5.2] under the following asymptotic uniform condition $$(H_4) \qquad \begin{cases} \lambda_{k-1} < \text{const} < \lambda_k + g'(x,s) < \text{corst} < \lambda_{k+1}, \\ \text{const} < \lambda_1 + g'(x,s) < \text{const} < \lambda_2 \end{cases}$$ In our theorem, this condition was replaced by asymptotic non-uniform condition. **Theorem 3** The condition $q < v(-\Delta - \lambda_k \mathbf{I})$ of [3, proposition 2.4] can be replaced by the condition $q < v(-\Delta - \lambda_k \mathbf{I})$, the same result is still ture. ## 2. Lyapunov-Schmidt Procedure Denoted by (,) and (,), the innerproducts in $L^2(\Omega)$ and $H^1_0(\Omega)$ respectively, $\|\cdot\|$, $\|\cdot\|_1$ be the corresponding norms. Let us denoted by $L_k: H^1_0(\Omega) \to H^1_0(\Omega)$ the linear operator defition by $$(L_{\nu}u, v)_{1} = -\int \nabla u \nabla v + \lambda_{\nu}(u, v). \tag{2.1}$$ Then (1.1) is equivalent to $$L_{k}u + Gu = f, (2.2)$$ where G and f are respectively defined by $$(Gu, v)_1 = -\int_{\Omega} g(x, u)v$$ and $$(f, v)_1 = -\int_{\Omega} (+\varphi + h)v.$$ Denoted by V the kernel of L_k and by V^{\perp} its L^2 -orthogonal complement. Let P and Q be the projections onto V and V^{\perp} respectly Appling P and Q to (2.2), then (2,2) becomes $$L_{\nu}w + QG(s\varphi + w) = Qf \qquad (2.3)$$ $$PG(s\varphi + w) = Pf \tag{2.4}$$ where $w \in V^{\perp}$. Let $k = (L_k | V^{\perp})^{-1} : V^{\perp} \to V^{\perp}$ and $T_s = kQ(f - G(s\varphi + w))$, then each s, T_s is compact. Denote by $S_h \subset R \times V^{\perp}$ the set of solutions of (2.3), i.e. $$S_h = \{(s, w) \in R \times V^{\perp} | w \in H'_0, L_{hw} + QG(s\varphi + w) = h \}.$$ By the uniform boundedness of g and Poincare's inquality [7, p68] it follows that T_s maps into the ball $\overline{B}_{\rho} = \{ w \in V^{\perp} \mid |w| < \rho \}$, where $$\rho = ||k|| (||Qf||_1 + \text{const}|\Omega|^{1/2} \sup |g(x,t)|).$$ (*) Therefore, by Schauder s fixed point theorem, $P_{roj_R}S_h = R$. Now, system (2.3), (2.4) equivalent to the following equation $$\Phi(s,w)=t. \tag{2.5}$$ in S_h , where the maping $\Phi: \mathbb{R} \times V^{\perp} \to \mathbb{R}$ is given by $\Phi(s, w) = (G(s\varphi + w), \varphi)$, i.e. (P_t) is equivalent to the equation $\int_{\Omega} g(x, s\varphi + w) \varphi dx = t$ in S_h . ## 3. Study of S. Let E, F be Banach spaces, $U \subset E$ be a open and bounded set and $f: U \to F$ be continuous map such that f(x) = 0 for every $x \in \partial U$. We say that f is 0-epi if for every continuous and compact map $h:U\rightarrow F$ such that h(x)=0every $x \in \partial U$ the nonlinear operator equation f(x) = h(x) has a solution $x \in U$. We recall first some results on the structure of the set of solution of the equation f(x) = 0 where f is 0-epi [6]. **Proposition** Let $f: U \rightarrow F$ be 0-epi and proper. Assume that for every $\varepsilon > 0$ and every $y \in f^{-1}(0)$, there exists a continuous and compact map $h_i: U \to F$ such that - (i) $h_s(y) = 0;$ - (ii) $||h_{\epsilon}(x)|| < \epsilon$ for all $x \in U$, - (iii) the set of solution of the equation $f(x) = h_{\varepsilon}(x)$ is ε -chained. $f^{-1}(0)$ is nonempty, connected and compact. By using above theory, we study the structure of S_h now. Lemma 3.1 Let $g: \Omega \times \mathbb{R} \to \mathbb{R}$ be bounded, λ_k is simple and let (H'_4) hold. Then $S_h^{S_0} = \{(s_0, w) | (s_0, w) \in S_h\}$ is nonempty, connected and compact. **Proof** Since $I-T_{s_0}$, is a completely continuous filed, we know that $I-T_{s_0}$ is proper and 0-epi (see the proof of [6, corollary 2.2]). Hence, in particular, (I- $T_{s_a}^{-1}(0)$ is bounded. Let $U \subset V^{\perp}$ be an open bounded set containing $(I - T_{s_a}^{-1})^{-1}(0)$, let $\varepsilon > 0$ and let $y \in (I - T_{s_0})^{-1}(0)$. Construct an approximation $g_{\varepsilon} = (1 - \frac{\varepsilon}{3\rho})g$ and define $h_{\varepsilon}(w) = kQ(G(s_0\varphi + w) - G_{\varepsilon}(s_0\varphi + w)) + kQ(G_{\varepsilon}(s_0\varphi + y) - G(s_0\varphi + y))$ where $G_{\epsilon}: H_0^1 \rightarrow H_0^1$, is defined by $$(G_s u, v)_1 = -\int_{\Omega} (1 - \frac{\varepsilon}{3\rho}) g(x, u) v,$$ for all $u \in H_0^1$. Then h_i satisfies (i) and (ii) of proposition above. In order to check assumption (iii) of the proposition, we have only to show that the equation $$(\mathbf{I} - T_{s_0})(w) = h_{\varepsilon}(w) . \tag{3.2}$$ has only one solution. In fact, from (3.1), we know that (3.2) can be written as follows $$w - k Q(f - G_s(s_0 \varphi + w)) = k Q(G_s(s_0 \varphi + y) - G(s_0 \varphi + y)).$$ (3.3) (3.3) is equivalent to the equation $$L_k w + QG_{\epsilon}(s_0 \varphi + w) = QG_{\epsilon}(s_0 \varphi + y) - QG(s_0 \varphi + y) + Qf$$ (3.4) we have only to show that the left satisfies all conditions of 4, lemmà 2.2. From the definition of g_{ϵ} , we know that $(H_2)(H_3)$ (H_5) of [4, lemma 2.2] are satisfied. From (H_4') and the definition of g_{ϵ} it follows that (H_4) of [4, lemma 2.2] is also satisfied. Therefore equation (3.2) has only one solution. Clearly h_{ϵ} is compact. By Proposition, $QS_h^{s_0} = (I - T_{s_0})^{-1}(0)$ is nonempty, connected and compact. So is $S_{\epsilon}^{s_0}$. **Lemma 3.2** Assume λ_k is simple, g is continuous and bounded, and (H_4') hold. Then $S_b \subset R^1 \times \overline{B}_a$ is a connected set. **Proof** This is a direct corollary of [2, theorem 0] and lemma 3.1. Under the conditions of Theorem 3, let $g_{\varepsilon} = (1 - \frac{\varepsilon}{2})g$, then Lipschitz constant of q_{ε} satisfies $q_{\varepsilon} < \nu(-\Delta - \lambda_k I)$. Arguing asimilarly, we obtain **Lemma 3.3** Assume λ_k is simple, g is bounded and continuous, and $q < v(-\Delta - \lambda_k I)$ hold. Then S_k is a connected set. Remark In this case, by contraction mapping principle, the equation $$(\mathbf{I} - T_{s_0})w = h_{\epsilon}(w) .$$ has only one solution. ## 4. Proofs of Theorems **Proof of Theorem** | Let $\tau = \{t \in \mathbb{R} \mid (\mathbb{P}_t) \text{ has a solution}\}$, $\tau_1 = \inf \tau$, $\tau_2 = \sup \tau$, By [1, theorem 1], $0 \in \tau$. Since g is bounded, the τ has to be bounded. This implies that $$-\infty < \tau_1 < 0 < \tau_2 < +\infty$$ and by [1, corollary 5, 11], (P_t) has solutions for $t = \tau_1 \tau_2$, From (2.5) and Lemma 3.2, it follows τ is connected. Therefore all that we have to show that (P_t) has at least two solutions if $t \in (\tau_1, \tau_2) = \{0\}$. Let $W = \{w \in V^{\perp} | (s, w) \in S_h\}$. By (*), W is bounded in H_0^1 , hence W is precompact for the convergence in measure. By $[9, P.53] \nabla \varphi \neq 0$ a.e in Ω . Now [1, prosition 2.1] gives $$\lim_{|s|\to\infty}\int g(s\varphi+w)\varphi=0$$ uniformly for $w \in W$. This is $$\lim_{|s|\to\infty} \Phi(s,w)=0,$$ uniformly for $w \in W$. In particular $$\lim_{|s|\to\infty} \Phi(s, w_s) = 0 \qquad \forall (s, W_s) \in S_h.$$ From Lemma 3.2, we get $(s_i, w_i) \in S_h$, i = 1, 2 such that $\Phi(s_i, w_i) = t$, $s_1 < 0$ and $s_2 > 0$. This is, (s_i, w_i) i = 1, 2 is the solutions of (2.5) in S_h . Hence $s_1 \varphi + w_1$, $s_2 \varphi + w_2$ are two solutions of (P_i) . Proof of Theorem 2 Apply Lemma 3.2 and the proof of [4, Theorem 5.2]. Proof of Theorem 3 Apply Lemma 3.3 and the proof of [3, Proposition 2.4]. **Remark** However, we should point out that our method cannot be used to extend the results such as [4,prop.5.1] and [4,prop.6.1]. The reason is that the set S_h there is a smooth curve. In our method, we require S_h to be a connected set for which we can't use the concept of derivative. #### References - [1] S. Solimini, J. Math. Analy Apply., 117(1)(1986), 138-152. - [2] Costa J.V.A. Goncaives, J. Math. Analy Apply., 84(2)(1981), 328—338. - [3] W. Stock, Nonlinear Analysis, 7(7)(1983), 739-746. - [4] A. Ambrosetti & G. Mancini, J. Diffe. Equa., 28(1978), 220-245. - [5] P. Bartolo, V. Benci & D. Fortunato, Nonlinear Analysis, 7(9)(1983), 981-1012. - [6] M. Martelli & A. Vigonli, Nonlinear Analysis, 7(7) (1983), 685—694. - [7] Chang Kung Ching, Critical Point Theory and its Application, Shanghai (1986). - [8] Chen Wenyuan, Nonlinear Functional Analysis, GanSu (1982). - [9] D. Kinderlehrer & G. Stampacchia, An Introduction to variation Inequaties and their Application, Nork London, (1980), p.53. - [10] Landesemen E. M & Lazer A. C, J. math. mech., (1970). - [11] R. Iannacci & M. N Nkshama, Nonlinear Analysis, 11 (4) (1987), 445-475. - [12] Furi.M, Martelli & M. Vignoli, Annali. Mat. Pura appl, 124(4)(1980), 321-342. ## 几类半线性椭圆共振问题 姚庆六 马如云 (西北师范大学, 兰州) 摘要 设 $\Omega \subset \mathbb{R}^n$ 是一个有界正则区域, $\{\lambda_k\}$ 是 $-\Delta$ 在 $H_0(\Omega)$ 上的一列特征值。假定对某个给定的k, λ_k 是单重的, φ 为其相应的特征函数, $\int \varphi^2 = 1$. 固定 $h \in H^{-1}$ 使 $\int h \varphi = 0$. 对于方程 $$(P_t) \qquad \begin{cases} -\Delta u - \lambda_k u + g(x, u) = t\varphi + h, \\ u = 0, & \partial \Omega \end{cases}$$ 本文利用连通技巧和闭联集理论,推广了文[1]、[3]、[4]中的一些结果。我们获得 定理 | 假设 $g: \mathbb{R} \to \mathbb{R}$ 满足 (g_1) g 是具有周期原函数的连续周期函数, $\lambda_{\iota}(k > 1)$ 简单. 如果对 $\forall s \in \mathbb{R}$, 有 $$(H'_4) \begin{cases} \lambda_{k-1} < \lambda_k + g'(s) < \lambda_{k+1} & k > 1. \\ \operatorname{const} < \lambda_1 + g'(s) < \lambda_2. \end{cases}$$ 则 $\forall h \in H^{-1}$, $\exists \tau_1, \tau_2 \in \mathbb{R}$. $\tau_1 < 0 < \tau_2$ 使 - (i) (\mathbf{P}_{t}) 有解当且仅当 $t \in [\tau_{1}, \tau_{2}]$. - (ii) 如果 $t\epsilon(\tau_1,\tau_2)$ -{0}, 则(P_t)至少有两个不同的解. 定理 2 假设 (H'_4) 成立, λ_k 简单,g满足 - (H_2) $\forall s, g 按 x 在 \Omega 上 可 测; g \in \mathbb{C}^1$ 对 a.e. $x \in \Omega$. - (H₅) g 有界 $$\lim_{|s|\to\infty} sg(x,s) = \mu > 0.$$ 则 $\forall h \in H'_0$, $\exists \tau_1, \tau_2 \in \mathbb{R}, \tau_1 < 0 < \tau_2$ 使 - (i) (\mathbf{P}_{t})有解当且仅当 $t \in [\tau_{1}, \tau_{2}]$. - (ii) 若 $t\epsilon(\tau_1,\tau_2)$ -{0}, 则(P_t) 至少有两个不同的解. 定理 3 [3, prop. 2.4] 中的条件 $$q < v(-\Delta - \lambda_k I)$$ 换成 $q < v(-\Delta - \lambda_k I)$ 结论仍然成立:,