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| . Introduction

Let QCR" be a bounded regular domain, {Ai}f be the sequence of the eigen-
values of the operator — A on H(')(Q). We suppose always that £k >1 is fixed, ¢
is a eigenfunc ion corresponding to A, with qu)zz 1,and he H'(Q) such that
fgh<p=0. Consider the following problem

() { ~Au-Au+g(x,u)=rp+h in Q WD
u=9 on
In past several years, many results on this problem are obtained in the
case of k=1 (see [3], [ 4]). In this paper, we consider the case of k>>1 by use
of the technique of connected set and the continuum theory for o-epi maps (see
[ 6 1), several existence and multiplicity results for (P ) are esteblished when
k>1 and 4, is simple.

Our main results are as follows

Theorem | Suppose

(g,). g(x,s)=g(s), VxeQ and g:R—>R is a continuous periodic function
with period T and periodic primitive,

(H;). k>1 and 4, is simple.

Hp . A<, +8'(s) <Ay, , k>1, const< 4, +g'(s) <4, .
Then for every h there are two numbers 1,,7,:7, <0<, such that

(i). (p) has a solution if and only if rel7,,7,].

(ii). If re(z;, 7,)-{0}, then (P,) has at least two solutions.

Remark The same result was given in [1, theorem 2] for k=1. We extend
this result to the case of k>>1 with additional condition (H;). ‘

Theorem 2 Suppose

(H,) g:QxR—>R is measurable in x for every seR, and geC' insa.e.onQ.
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(H;) k>1 and 4, is simple.
(H) A <A, +8(x,)<A4,,, , k>1
const<{4, +g'(x, 5)<4,.
where g'(x,s) = (0/ds)g(x,s).
(H,) sup{le(x, s)|: (x, $) eQxR}=d< + o0
If for every xe¢ Q,

lim sg(x, s)=u>0.

Then for every heH&, there are two nﬁmbers 7,5 7,3 1, <0<, such that
(i) (P, has solutions if and only if z¢[r,7,]. _
(ii) If re(1,,7,)-{0}, then (P) has at least two distinct solutions.
Remark The same result was showed in [4, theorem 5.2] under the follo-
wing asymptotic uniform condition
H) {,1~,‘_1<¢:.or1st<A,‘*-5,"(x,s)<<:orts’(</lk+l ,
const< A, + g'(x, s)<const<4,
In our theorem, this condition was replaced by asymptotic non-uniformcondition.
Theorem 3 The condition ¢<{v(—-A-A4,I) of [3, proposition 2.4] can be rep-

laced by the condition g<{v(-A-41,1I), the same result is still ture.
2 . Lyapunov-Schmidt Procedure

Denoted by (,) and (,), the innerproducts in-L*(Q) and Hé(Q)respectively, I,
|+ |, be the corresponding norms. Let us denoted by L, :H.(Q)—>HLQ) the
linear oprator defition by .

(Lusv), =~ [TuTo+1,(u,0). (2.1)
Then (1.1) is epuivalent to
\ Lu+Gu=f, (2.2)
where G and f are respectively defined by

(Gu,p), = - fﬂg(x, uly
and

(fron= = [ (+o+h.
Denoted by V the kernel of L, and by vt its L*-orthogonal complement. Let
P and Q be the projections onto ¥ and vt respectly Appling P and Q to (2.2),
then (2,2) becomes
Lw+QG(sp+w)=Qf - (2.3)
PG(sp+w)=Pf (2.4)
where web?t.
Let k=(L,|VH™ ¥ >¥V* and T ,=kQ[f-G(sp+w)], then each s, T, is compact.
Denote by S,CRxV™ the set of solutions of (2.3), ie.
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S,={(s,w)eRxV*lweH],L, +QC(sp+w)=h},
By the gniform boundedness of g and Poincare’s inquality [7,p68] it follows that
T, maps into the ball B, = {weV‘Li |w|<p}, where
p=lk)clesfl,+constiQ| Zsuplg(x, 1) ]). (%)
Therefore, by Schauder s fixed point theorem, P,ojRS,,:R. Now, system (2.3),
(2.4) equivalent to the following equation
d(s,w)=t. (2.5)
in §,, where the maping ®:RxVIR is given by &(s, w) =(G(sp+w),p), i.e.
(P,) is equivalent to the equation ng(x, sp+wipdx=t in §,.

3. Study of ‘S,,

Definition Let E,Fbe Banach spaces, UCE be a open and bounded set and
f:U—F be continuous map such that f(x)=0 for every xedU. We say that f is
0-epi if for every continous and compact map h:U—F such that A(x)= for
every xe¢0U the nonlinear oprator equation f(‘x) = h(x) has a solution xeU,

We recall first some results on the structure of the set of solution of the
equation f(x)=0 where f is ¢o-epi [6]. ' )

Proposition Let f:U—F be (-epi and proper. Assume that for every e>(
and every yef_l(o), there exists a continuous and compact map h,:U—>F such
that

(i) h(y)=90

(ii)  fJh(x)|<e for all xeU,

(iii) the set of solution of the equation f(x)=h,(x) is &-chained. Then
F£7'(0) is nonempty, connected and compact.

By using above theory, we study the structure of S, now. .

Lemma 3.} Let g:QxR—>R be bounded, A, is simple and let (Hj}) hold .
Then Sp={(s,,w)|(s,, w)eS,} is nonempty, connected and compact.

Proof Since I-T;. is a completely continuous filed, we know that I—T is
proper and 0 -epi (see the proof of [6,corollary 2.21). Hence, in partlcular, (I—
T, ) Yy is bounded Let UCV be an open bounded set containing (I-T, ) 0,
let ¢>0 and let ye(I-T,)'(0). Construct an approximation g, = 1—3i)g and define

h,(w)—kQEG(squw) G,(sqp+ W)+ kQ(G, (540 + y) — G(s@+ y)] 3.1
where G, tHy—~H,, is defined by

(Gu,v),= — fn(l_ —3—:)g(x, u)v,.

for all ueHé. Then h, satisfies (i) and (ii) of proposition above. In order to
check assumption (iii) of the proposition, we have only to show that the equa-

tion
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(I—Tso)(W) =h(w) . (3.2)
has only one solution .

In fact, from (3.1), we know that (3.2) can be written as follows

w—kQUf-G,(s,0+w)])=kQ(G,(syp+y) —Glsyp+ y)]. (3.3)
(3.3) is equivalent to the equation
Lw+QG, (50 +w)=0G, (50 + ) -QCG(sop+y)+Qf (3.4)

we have only to show that the left satisfies all conditions of 4, lemma 2.2. From
the definition of g , we know that (H,)(H;) (Hy) of [4, lemma 2.2] are satis-
fied. From (H;) and the definition of g, it follows that (H,) of [4,lemma 2.2]
is also satisfied . Therefore equation (3,2) has only one solution. Clearly h, is
compact. By Proposition, QS:°: (1—7}0)_1(0) is nonempty, connected and com -
pact. So is S} .

Lemma 3.2 Assume A, is simple, g is coutinuous and bounded, and (Hj)
hold. Then S,CR' «xB, is a connected set.

Proof This is a direct corollary of [2, theorem 0] and lemma 3.1.

Under the conditions of Theorem 3, let g,:(l—?‘e)g, then Lipschitz cons-
tant of ¢, satisfies ¢,<<v(- A-1,I). Arguing asimilarly, we obtain

Lemma 3.3 Assume 41, is simiple, g is bounded and continuous, and g<v(-A
-4, ) hold. Then §, is a connected set.

Remark In this case, by contraction mapping principle, the equation

(I-T, )w=h(w) .

has only one solution,
4 . Proofs of Theorems

Proof of Theorem | Let 7= {teRl(Pt) has a solution}, 1, =infr, 7,=supr,
By [1, theorem 1], 0e¢r. Since g is bounded, the 7 has to be bounded. This imp-
lies that

— oo, <0< 1, < + 00

and by [1, corollary 5,111, (P,) has solutions for ¢=r 7,, From (2.5) and Lemma
3.2, it follows 1 is connected. Therefore all that we have to show that (P)
has at least two solutions if re(r,,7,)~{0}.

Let W = {weV*I (s,w) eS,}. By (»), W is bounded in H,, hence W is precom-
pact for the convergence in measure. By [9, P.53] Vo0 a.e in Q. Now [1,
prosition 2,17 gives

lim fg(sw +wlp=0

|s] o0
uniformly for weW. This is

lim &(s,w) =0,

§|-+o0
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uniformly for weW . In particular

Lim &(s,w) =0 V(s,W)eS,

IS —o0

From Lemma 3.2, we get (s, w)eS,, i=1,2 such that &(s,,w,) =1, 5, <0
and s,>0. This is, (s,,w,) i=1,2 is the solutions of (2.5) in §,. Hence s5,9p+w,,
5,9 +w, are two solutions of (P).

Proof of Theorem 2 Apply Lemma 3.2 and the proof of [4, Theorem 5.2]7.

Proof of Theorem 3 Apply Lemma 3.3 and the proof of [3,Proposition 2.4].

Remark However, we should point out that our method cannot be used to
extend the results such as [4,prop.5.1] and {4, prop.6.1] 1.The reason is that
the set §, there is a smooth curve. In our method, we require S, to be a connec-
ted set for which we can’t use the concept of derivative.
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JU 26 3 £ 1% Bl 3K 3R 5] &

kKN Hwz
(TR A, 2H)

BE BQCR'E-AHREMKE, A)R-AZEH(Q) LH—FSEHE. BEXN
RABEM, AL RBEN, o WEMNNSERY, [o=1. BEhH #Efhp=0. ¥FF
)

(P)

1

{ ~Au-Au+g(x,u)=tp+h,
u=70, ie}
AR BB MABRERE, BT 011.03 13 (41— BER, BNKE
EEI B soR-RIEE
(g) e RABFRAMIF R M ELEH PR,
AS>DR#B. RS VseR, F
) A <A +g (<A, k>1.
(Hy) {c:)r:st<k/ll+g’(s)<,1;.
W VheH', 31,,1,eR. 1,<0<1, i
(i) (P) AMYBEMY relr,,1,].
(i) WMBre(r,,7,)-{0}, WP ELBEHAFEKR.
B2 B (H)) &L, A, M8, ¢ HE
(H,) Vs,g&xEQLWM; geC'Rfa.e. xeQ.
(Hy) ¢ BHR
lim sg(x,s)=u>0.

[s|->oo
W VheH), 31,,1,eR, 1,<0<r,f#
() (P) BMYHMNY relr,,7,].
(i) Ftelr,,1,0-{0), W (P) ELHAHEARELMR.
EE3  [3,prop.2.4] HHIEHE
g<v(-A- 4D BEqg<v(-A-21)
Z R RL -
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