Journal of Mathematical Research and Exposition Vol. 10, No.2, May, 1990

Prime Cycle-Factorizations of Complete Graphs*

Wang Jian fang

Wang Fuda

(Institute of Applied Mathematics, Academia Sinica, Beijing) (Chinese College of Coal Economic, Yantai)

§ | . Introduction

 C_k denote a cycle of length k. A factor H of a graph G is called $\{C_{k_1}, C_{k_2}, \cdots, C_{k_l}\}$ -factor if each component of H is one of $\{C_{k_1}, C_{k_2}, \cdots, C_{k_l}\}$, A $\{C_{k_1}, C_{k_2}, \cdots, C_{k_l}\}$ -factorization of G is a partition $\{E_1, E_2, \cdots, E_m\}$ of E(G) such that each spanning subgraph (V, E_i) is a $\{C_{k_1}, C_{k_2}, \cdots, C_{k_l}\}$ -factor. If t=1, $\{C_{k_1}\}$ -factor write simply C_{k_1} -factor. Enomoto ect. [1] discussed C_k -factorization of complete bipartite graphs. In this paper, we shall discuss cycle-factorization of complete graphs. A cycle with prime length is called prime cycle. If there exists a $\{C_{k_1}, C_{k_2}, \cdots, C_{k_l}\}$ -factorization of G then we say that G is $\{C_{k_1}, C_{k_2}, \cdots, C_{k_l}\}$ -factorizable.

Let ϕ be a permutation of symmetric group S_n and ϕ' the permutation for pair group of S_n defined $\phi'\{i,j\} = \{\phi_i,\phi_j\}$ The ϕ' is called the induced permutation of ϕ .

Let G_1 and G_2 be two given graphs. Their cartesian product, wite $G_1 \times G_2$, is defined that

$$V(G_1 \times G_2) = V(G_1) \times V(G_2)$$

and

$$E(G_1 \times G_2) = \{ (u_1, v_1) (u_2, v_2) | u_1 u_2 \in E(G_1)$$
and $v_1 = v_2$, or $u_1 = u_2$ and $v_1 v_2 \in E(G_2) \}$.

Their lexicographic product, write $G_1 \otimes G_2$ is defined that

$$V(G_1 \otimes G_2) = V(G_1) \times V(G_2)$$

and

$$E(G_1 \otimes G_2) = \{(u_1, v_1)(u_2, v_2) | u_1 u_2 \in E(G_1) \}$$
or $u_1 = u_2$ and $v_1 v_2 \in E(G_1)$

 I_n denote isolate graph of order n. The terminologies and notations using in this paper are same in [2], [3].

^{*} Received May. 12, 1988

§ 2 Theorems and Proof

Lemma 1 If n is odd, then there exist C_n -factorization of K_n . This result can be found in [2]. Here we give a decomposition. Let

$$V = V(K_n) = \{a_1, a_2, \dots, a_n\}$$

$$\phi = (a_1, a_2, \dots, a_{n-1})(a_n).$$

$$C = (a_1, a_{n-1}, a_2, a_{n-2}, \dots, a_{(n-1)/2}a_{(n-1)/2+1}, \dots, a_n, a_1).$$

$$E_0 = E(C).$$

then $\{(V, (\phi)^i(E_0)|i=0,1,\dots, (n-1)/2-1\}$ form a C_n -factorization of K_n .

Lemma 2 $K_{nm} = K_n \otimes I_m \cup I_n \times K_n$ and

$$E(K_n \otimes I_m) \cap E(I_n \times K_n) = \phi$$

Proof It immediately follows from definition.

Lemma 3

$$K_{n_{1}, n_{2}, \dots, n_{i}} = K_{n_{1}, n_{2}, \dots, n_{i}}$$

$$\bigcup_{i=2}^{i-1} I_{n_{1}, n_{2}, \dots, n_{i_{1}}}$$

$$\times (K_{n_{i}} \otimes I_{n_{i+1}, \dots, n_{i}})$$

$$\bigcup I_{n_{1}, n_{2}, \dots, n_{i-1}} \times K_{n_{i}}$$

and in this decomposition each other has no edge in common.

Proof Repeat to use lemma 2 we can obtain the lemma.

Lemma 4 If m is odd, then there exists a C_n -factorization of $C_n(m) = C_n \otimes I_m$. Proof

$$A^{i} = \{a_{1}^{i}, a_{2}^{i}, \dots, a_{n}^{i}\}, i = 1, 2, \dots, m$$

Let

$$\phi_{j} = (a_{j}^{1}a_{j}^{2} \cdots a_{j}^{m})$$

$$(a_{1}^{1}) \cdots (a_{j-1}^{1})(a_{j+1}^{1}) \cdots (a_{n}^{1}) \cdots$$

$$(a_{1}^{i}) \cdots (a_{j-1}^{i})(a_{j+1}^{i}) \cdots (a_{n}^{i}) \cdots$$

$$(a_{m}^{m}) \cdots (a_{j-1}^{m})(a_{j+1}^{m}) \cdots (a_{n}^{m}), j = 1, 2, \cdots, n.$$

$$\phi = (a_{1}^{1}, a_{1}^{2}, \cdots, a_{1}^{m})(a_{2}^{1}, a_{2}^{2}, \cdots, a_{2}^{m}) \cdots$$

$$(a_{n}^{1}, a_{n}^{2}, \cdots, a_{n}^{m}).$$

It is obvious that $C_n(m)(A^i) \cong C_n$. We only consider that n is odd, for n even the proof is similar. Let

$$E' = \bigcup_{i=0}^{m-1} (\phi')^{i} (E(C_{n}(m) (A')))$$

$$E_{i} = (\phi'_{2} \phi'_{4} \cdots \phi'_{n-1} (\phi_{n}^{-1})')^{i} (E'), \quad i = 1, 2, \dots, m-1$$

It is easy to see that $C_n(m) \in E_i$ is a C_n -factor of $C_n(m)$. It is noly need to prove that $\{E_i | i=0,1,\cdots,m-1\}$ form a partition of $E(C_n(m))$. For this it is need to prove that

(I) If $i \neq j$, then $E_i \cap E_i = \phi$ and

$$|E(C_n(m))| = \sum_{i=0}^{m-1} |E_i|$$

We first prove (I). Now we prove that there is no edge with form (a_{n-1}^p, a_n^q) in E_i and E_j in common. Supose otherwise, there exists such an edge $(a_{n-1}^p, a_n^q) \in E_i \cap E_j$. Then there exist t_1 and t_2 , such that

$$p \equiv t_1 + i \pmod{m},$$

$$p \equiv t_2 + j \pmod{m},$$

$$q \equiv t_1 + i \pmod{m},$$

$$q \equiv t_2 + j \pmod{m},$$

$$t_1 + i \equiv t_2 + j \pmod{m},$$

$$t_1 - i \equiv t_2 - j \pmod{m},$$

$$2i \equiv 2j \pmod{m}$$
(2)

Since n is odd, (2, m) = 1. This $i \equiv j \pmod{m}$ to see [4]. Because i, j < m, therefor i = j.

It contrary to the supose $i \neq j$. Hence there is no edge with form (a_{n-1}^p, a_n^q) belong to either both E_i and E_j . It is obvious that there is no an edge with other from belong to $E_i \cap E_j$.

Now we prove (II). Since $C_n(m) \in E_i$ is a C_n -factor of $C_n(m)$, it contains in components one of which is isomorphic to C_n . Hence

$$|E_i| = nm$$
, $\sum_{i=0}^{m-1} |E_i| = mnm = nm^2$.

Obviously $|E(C_n(m))| = nm^2$. Thus

$$\left| E(C_n(m)) \right| = \sum_{i=0}^{m-1} \left| E_i \right|.$$

From above we know that $\{E_0, E_1, \dots, E_{m-1}\}$ is a partition of $E(C_n(m))$. Hence $\{(V(C_n(m)), E_i) | i = 0, 1, \dots, m-1\}$ forms a C_n -factorization of $C_n(m)$.

Theorem 5 If m, n are odd numbers, then $K_n(m) = K_n \otimes I_m$ is C_n -factorizable.

Proof Arccoding to lemma 1, K_n is C_n -factorizable. Each factor of the C_n -factorization is isomorphic to C_n . The C_n -factorization has (n-1)/2 such factors, write these factors as $C^1, C^2, \dots, C^{(n-1)/2}, E(C^i) \cap E(C^j) = \phi$ if $i \neq j$. Thus we get a decomposition of $K_n(m)$ as

$$K_n(m) = K_n \otimes I_m = \left(\bigcup_{i=1}^{(n-1)/2} C^i\right) \otimes I_m$$
.

Since $C^i \cong C^n$, $C^i \otimes I_m$ is C_n -factorizable by lemma 4. Thus $K_n(m)$ is C_n -factorible. Lemma 6 If G is C_n -factorizable, then for any positive integer m, $I_m \times G$ is C_n -factorizable. **Proof** It is obvious.

Theorem 7 If n is odd. Then for any positive integer m, K_n is C_n -factori zable.

Proof By Lemma 3, $K_{\mu\nu}$ can be decomposed as

$$K_{n^{m}} = K_{n} \otimes I_{n^{m-1}} \bigcup_{i=2}^{m-1} I_{n^{i-1}} \times (K_{n} \otimes I_{n^{m-1}}) \bigcup I_{n^{m-1}} \times K_{n}.$$

Because n is odd, for any $j \ge 1$, n^j is odd. According to Theorem 5 and Theorem 6, each factor in the above decomposition of $K_{n^{m}}$ is C_{n} -factorizable. Thus $K_{n^{m}}$ is C_n -factorizable.

Theorem 8 If $p \ge 3$ is odd. Then K_p is prime cycle-factorizable. That is, there exists a cycle-factorization each factor of which is prime length cyclefactor.

Proof Give prime factorization of P. write

$$P = n_1^{m_1} n_2^{m_2} \cdots n_r^{m_r}$$
.

each n_i is prime number. Because P is odd, each n_i is odd.

We first give decomposition K_p according to Lemma 3.

$$K_{\rho} = K_{n_{1}^{m_{1}}} \otimes I_{n_{2}^{m_{1}} \cdots n_{i}^{m_{i}}} + \bigcup (\bigcup_{i=2}^{l-2} I_{n_{1}^{m_{1}} \cdots n_{i-1}^{m_{i-1}}} \times (K_{n_{i}^{m_{i}}} \otimes I_{n_{i+1}^{m_{i+1}} \cdots n_{i}^{m_{i}}})) + \bigcup I_{n_{1}^{m_{1}} \cdots n_{i}^{m_{i+1}}} \times K_{n_{1}^{m_{1}}}$$

 $+ \bigcup I_{n_1^{m_i} \cdots n_{i-1}^{m_{i-1}}} \times K_{n_i^{m_i}}.$ By theorem 7, theorem 5 and theorem 6, we know that for any $i, 1 \le i < t$,

$$I_{n_1^{m_i}\cdots n_{i-1}^{m_{i-1}}}\times (K_{n_i^{m_i}}\otimes I_{n_{i+1}^{m_{i+1}}\cdots n_i^{m_i}})$$
 is C_{n_i} -factorizable.

$$K_{n_1^{m_1}} \otimes I_{n_1^{m_1} \cdots n_r^{m_r}}$$

is C_{n_1} -factorizable.

$$I_{n_1^{m_1}\cdots n_{l-1}^{m_{l-1}}} \times K_{n_i^{m_i}}$$

is C_{n_i} -factorizable.

The proof is completed.

References

- [1] Enomoto H. Mryamoto K. and USHio K, C_k -Factorization of complete Bipartite Graph. (to appear).
- [2] F. Harary and M. Plamer, Graphic Enumerations, Academic press, New York, 1973.
- [3] F. Harary, Graph Theory, Addison-wesless, publishing company, 1969.

完全图的素圈因子分解

王建方

王福达

(中国科学院应用数学研究所, 北京) (中国煤炭经济学院, 烟台)

摘要

图的因子理论是图论研究中最活跃的课题之一. 其中心问题是把一个图分解成具有给定性质的因子.

设 G_1 , G_2 , …, G_k 是一组给定的非空图. 图 H被称为图 G的一个 $\{G_1, G_2, \dots, G_k\}$ — 因子,如果 H是 G的一个支撑子图并且 H的每个分枝同构于 $\{G_1, G_2, \dots, G_k\}$ 中的一个图. 若 k=1, $\{G_1\}$ — 因子简称为 G_1 —因子。图 G=(V, E)的一个 $\{G_1, \dots, G_k\}$ — 因子分解是边集 E的一个分划 $\{E_1, E_2, \dots, E_k\}$,使得每个 $\{V, E_i\}$ 都是一个 $\{G_1, G_2, \dots, G_k\}$ — 因子。统称这类因子和因子分解为分枝因子和分枝因子分解。若 G_1, G_2, \dots, G_k 都是圈,则特别称相应的因子和因子分解为圈因子和圈因子分解。 [1][2]研究了一些类型的分枝因子的存在性。本文将研究图的圈因子分解。

设 ϕ 是对称群S"的一个置换, ϕ' 表示由 ϕ 导出的对称群S"的配对群(参看[3])的置换,满足 $\phi'(i,j) = \{\phi i,\phi j\}$.

我们称长度为素数的圈为素圈:

对给定的两个图 $G_1, G_2, G_1 \times G_2$ 表示 G_1 称 G_2 的 迪卡尔乘积圈,定义如下:

$$V(G_1 \times G_2) = V(G_1) \times V(G_2) .$$

$$E(G_1 \times G_2) = \{(u_1, v_1)(u_2, v_2) | u_1 u_2 \in E(G_1) \quad \underline{\Pi} \ v_1 = v_2 ,$$
或 $u_1 = u_2 \, \underline{\Pi} \, v_1 v_2 \in E(G_2) \} .$

 G_1 和 G_2 的逻辑积,记为 $G_1 \otimes G_2$,定义为:

$$V(G_1 \otimes G_2) = V(G_1) \times V(G_2),$$

 $E(G_1 \otimes G_2) = \{(u_1, v_1)(u_2, v_2) | u_1 u_2 \in E(G_1) \text{ if } u_1 = u_2 \}$
 $\underline{\text{H}} v_1 v_2 \in E(G_2)\}.$

I,表示具有 n 个顶点的孤立图.