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| . Introduction

Let I'(t) = (1), p,(r),,»,(t)) be a continuous curve in R", define the

“maximal function along I'” of f by

M f(x) =suplo[" f(x=T()dy] (1)
w>p B Jo
and the “Hi*bert transform along I'” of f by
Hf o) =P.v.[ = fx-ran S (2)
It is of substantial interest to seek condition on I' along which we have
IMrl,<c,ls1l, (3)
12 71,<Clrl, (4)

for all feI”(R"™. .

E. M. Stein and S. Wainger proved in [ 1] that if I is a homogeneous curve,
then (3) and (4) hold for all p, 1<{p<{oco. D. Weinberg extended this result
to approximately homogeneous curves, see [ 2], A little later, W.C. Nestlerode
considered odd curve, and showed in [ 3] that for highly monotone curves, (3)
holds for 2 <{p<oo, and (4) holds for p=2. Recent results are found in [4], In
case n =2, better results are obtained for convex curves, see for example [ 5]
and [6].

The main object of this paper is t0 extend the result of [37] to all p,1- p

under a condition which is weaker than the one given out in [ 3],

.
.

2 . Statement of the Current Result

We shall consider curves I' = (p,, p,,«+,»,) : R—>R" in which we assume the

coordinate function v; satisfy

7;*R =R is either even or odd and of class C"(R) .
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y0) =0, v,(0)>0, for >0, A<j<n), and r (1) =1, (t>0). (5)
Just as in [ 3], We inductively define the differential operators along I' by

D'f=f', D*"'=(D*f/D"p,) k=1,2,3. (6)
We say I' is convex, if
D*» (1)>0, for >0, 1<k<n. (7)

For convenience of the statement, we introduce some terms, By a function
f “is quasi-increasing”, we mean there exist C,>0, C,>0,such that f(x)>C,f(1)
for t<x<{C,t; By a function g “has b.d.t. property”, we mean that there exists
a constant 2> 1, such that for C>1, g(Ct) >2g(r). Our main result is the follo-
wing.

Theorem A Let I'=(y,,p,, ., »,) satisfies the basic assumption (5 ) and the
“convexity” assumption (7). If I also satisfies

(a) |D* ,/D*»,| have b.d.t. property for 1<<k< j<n;
(b) D'y, ,D% e, D" 'y, _,, D'y, are quasi-increasing,
then we have
Imrl,<c,lrl, (1<p<oo) (8)
VHr) ,<Chr), (1< p<loo) (9)

3. Main Idea of the Proof

By inductive method, we consider the case n=m. Put

M, f(x) :—'}—I[, £ =p,(1), oony xp = (1)1 (10)
k k
1 1 A
N f(x) = II,Jf'k T {0” FOq =y, () e Xy =y, (D), X, — s)dsdt
(11)
where I.= (A% %)

A=inf{la>0; D* (B1) /D% (Bt)> 2Dy (1) /D*y (1), y,(B1)>2p (1)
CvB>a, >0, 1<k<j<n)

The hardnet is the estimation of ||51A1p'(M,(—Nk)|pr. To do this we intro-
duce a Paley-Littlewood decomposition R{(¢&,,¢,, <) €eR; » (A <¢,|<
»(A¥"1)} . Choose w,e Co( R"~{0}) such that 0<Awk(§ y<1, Supp w,CR,,, UR,UR,_, ,
and T? w,=1. Define operators T,:}"(;) = w (&)S (&), we have

1
S‘:pl(Mk_Nk)fl<Z(Zl(Mk" Nk)Tj»kf‘Z)z (12)
J k

An application of plancherel formular gives

LN
" S?pl(Mk"Nk)fl ”2<CZ ” 2 lJl/mf”z<C"f"2 (13)
J

By interpolation and duality, we can extend (13) to all p, 1<<p<Coo. (see [ 7]
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for the first step).

(9) is proved in a similar way

4. Remark

Our “convexity ¥ assumption is equivilant to that in [ 4 ], since by triangular-
ization, we can see that the matrix
P P e p (D)
YO ) e p (D)
YAy P wee ()

is equiviant to matrix

D'y (1) D'p,(t) e D'y (1)
0 D'y ((£) D*p, (1) «es D'y (1) Dy (1)
0 0 0 D'y (£)D¥ (1) eeeD™y (D)
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