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A Note on Symmetric Block Circulant Matrix*

Cao Zhihao

(Dept, Math,, Fudan University, Shanghai)

The symmetrc block circulant matix is a useful tool in the vibration analy-
sis of structures. For example, the computation of the natural frequencies and
the corresponding normal modes for rotationally periodic structures can simply
be reduced to the solution of a generalized eigenvalue problem with a pair of
symmetric block circulant matrices. Other applications of circulant matrix see
[1,37.

Chao [ 2 1 has studied the spectrum properties of symmetric circulant matrix.
But his results on the symmetric block matrix with ciruulant blocks are incor-
rect., In this note we study the eigenvalue problem for symmetric block circu-
lant matrix. When each block in it is a circulant matrix, our result corrected
the errors in [ 2].

Let Ac a4 (m, n) be a block circulant matrix;

Ao A, A

where A, ¢R"", k=0, s, m-1,

Obviously, 4 can be expressed as follows,

m-1 &
A=Y 11X 4,, , (1)
k=0
where I1,R™™ is a permutation matrix,
01 0 0
0 0 1 0
IT =
m (2)
0 0 soe soe 1

L100mo

and  denotes Kronecker product.

. Lemma | Ae¢ s@(m, n) is a symmetric matrix if and only if
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A=Al i, k=1, m-1, (3)
and '
Ay=Ag . (3)
Proof From (1) and the well known properties of Kronecker product we
have

m-1 m-1 m-1
AT= (L TQ40" =L () ®@4c= L Nz 47
=0 k=0 k=0

If conditions ( 3) are satisfied we get immediately;

m—1
AT:kZ Nr@A,,=A4. (4,=A4,).
=0

Conversely, if AT=A4, then we have
ol mek T el ok
:Z Hm ®A = 2 Hm® Ak ’
=0 k=90 .

thus, from ( 2) we can deduce (3).

Let FeC'™ be a matrix as follows;

1 1 1 =1

2 -1
F Ligpr-nDe-ny-_1 1 @, @] - o
T JI 1 o} a,,“ e @D (4)

1 a),’," AUV o -7

ni . . - .
where w,=exp(zT). Obviously, F, is a unitary matrix.

Theorem 2 Let A¢ g @(m, n) be symmetric, then A is unitarily similar to an
Hermitian block diagonal matrix, i.e., A4 is of the form;
A=(F,R1,) diag(M,, «, M, ) (F,®1,))", (5)
where MjeC""’, j=0,,m—1, are as follows:

(1) For m even>2, 1\7}. is the following matrix;

~ Lk —kj 4T j ‘
M=y " @A+ EAD + (~ 1A, (6)
(2) For m odd>3, M, is the following matrix.
~ (m=1)/2 .
My=dy+ 5 (oM Ay + T AD) . (7)
k=1

Proof Iet Q_ be the following matrix.

Q, =diag (1, o, a):,,"',a):ﬂ ), (8)
then we have
,=F,Q_F,
Hence, it holds
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LR A4,=(F,Qf FYQF(FAF,)F' .
From (1) we have

m-1 *
A= FQF) [ L M@ (FAF)]) (FOF)". | (9).
. =0
For m even and >2. By Lemma 1 we have

m-1
;09:(}9( F} A, F)=1,Q(F; A, F,)

mi2—1 —
+ }:EQZ®<F:AJ» Y OER(Fr A F)")
=1

+Q:/2®(F:AM/ZEI) =diag( Mo ’ M1 y **%y M,,,_l) . (10)
where, for j=0,1,¢,m~1,

m/2-1 .
M, = F AyF,+ 3. (0 (F'AF,) + ot (F A, F)* )+ (-1YF} A, ,F,
k=1 .

. m/2-1 ‘ .. . ~
‘ = Fi( A4y + kil (o)A, +@l AD) + (- 1)’ A,,,,) F, = F!M,F, (11

Thus, we have
diag(My, M, , «-, M, )= (1,,®F:)diag(1‘70,“'9 ITL-—) YUI,,QF,).
From (9), (10) and (11) we get (5) with (6).
Analogously, for m odd >3, we have

m-1
. kZ (Q,Q(F'4,F))=1,Q(FiA,F,)
=0 :

(m—l)/z x - —k » » .
S (Q.Q(F, A, F,)+Q,Q(F, A, F) 1=diag(M,,++, M, _,),
k=1
(12)
where, for j=0,, m-1,
(m-1)/2 R , ~
M,=FAy+ Y (0)A+35A))F,=FyMF,. (13)

k=1
From (9), (12) and (13) we get (5) with (7).
Let Be @#g(m, n) be a block circulant matrix.

B, B - B

B= Bm—l

oo see LYY see

Bl BZ vee BO

where B, eR™", k=0,,m-1.
Theorem 3 Let A, Be g (m n) be symmetric, then the symmetric matrix

pencil A- 1B is unitarily equivalent to the following symmetric matrix pencil

diag(ﬂo "Aﬁoo **%y A?,,,ﬁl -2 Nﬁn‘! )s
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where M,,j:0,1,---,m— 1, are the same as in (6) or (7), while ﬁj,yjzﬂ,l,"',
m- 1, are analogously defined for B as Mj for A.

Furthermore, if 4 (or B) is a symmetric positive definite matrix (in such

case A-—AB is called symmetric positive definite pencil), then each pencil
M~ 2N, (=0, m-1)
is a symmetric positive definite one.

Proof Apply Theorem 2 for A and B.

Theorem 4 Let Ac ®we(m, n)(n>2) be symmetric with each 4,¢R"""a circu-
lant matrix for k=0, 1,,m—1.Then for the mn eigenvalues Aj,s;,j:(),l,---,m
-1, s=0,1,>>,n—-1, of 4 we have;

(1) For the case of m an even integer >2.

(a) For n even and > 2.

nf2-1 mi2=1 n- kj
Aja=ad” (= Daf+2 3] a‘r‘”cos% +2 3 Za""cos(z( )7[)
” r=1 k=1 r=9

n/2-1
+ (1Y Ca{m? + (- 1)sa,(l/n;/2) +25 al™?cos 2S’:7r 3

(b) For n odd and >>3:

(n-1)/2 m/2 n-
A c=ag’ +2 Y a‘,(”cos—z— Z ):a(k)cos(z( ) )
r=1 k=1 r=0
. (n-1)/2
+( - Dag™? +2 i aﬁ"’/”cos————zsn”r 3.
r=1

( 2) For the case of m an odd integer >3.

(a) For n even and >2;

(m‘l)/Zn
8’7[ -
A, =al” +(-D “°)+2§ a Ogos 24T, a'®

Jas
r=1 n=1 r=0

(b) For n odd and >3:

COS(Z(—+ ) ).

(n-1)/2 (m-1)/2 n ;
0) 0) 2sm ) kj rs
A, = +2 §_ a, cos—’7—-+2 > § a cos(2(~—+7)7r),

k=1 r=0
where the circulant matrices A4,¢ R"", k=0,1,*, m -1, have the form:

L PLC) BN ¢ )
a a * q, 1
I N 0
A, an~1 an

0

(k) (k) (k) J
a, a, s dg

Proof By Theorem 2 we have;
For m even >2, the n eigenvalues Aj”, §=0, 1,eee, n—1, 0f 1\7j can be exp-

ressed as follows (c¢.f. (6)):
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) me . X
A=A 2 g%Re(wﬁﬂT’>+(—1yA?”>. (14)

For n odd > 3, the n eigenvalues 4, , 5=0,1,*,n—-1, of M;’ can be expres-
sed as follows (c.f. (7)):

(m-1)/2 .
A,=40 +2 T Re (2%, (15)
k=1

where 4(¥, s=¢, 1%, n~1, denote the eigenvalues of the circulant matrix 4, .

We know from Lemma | that Ay and A,,, (when m is even and >2) are
symmetric circulant matrices. From Theorem 2 (Let m be replaced by nand let
n equal 1) it is easy to get the followinglresults:

. p

For n even >2, the n eigenvalues 17" s=¢ { e n—1,o0f A, p=C, m/2(m

even and >2) can be expressed as follows:

n/2-1 2S’7[
A(sp) :a(()p) +( - l)sa(”) +9 Z afp)COS——n‘—

n/2 = (18)

For n odd >3, the eigenvalues A{”, s=0,1,*, n—1,0f 4, p=0,m/2(m even
and >2) can be expressed as follows;

(n-1/2
) .. 2sm
MO =g +2 5 al? cos———

r=1

From (14) , (15) , (16) and (17) the conclusion of the theorem follows,

QYD)

References

[ 1] R. Bellman, Introduction to matrix analysis, 2nd ed., McGraw-Hill, New York, 1970.
[2] C.Y.Chao, Linear Algebra and Appl., 103: 133—148 (1988) .
[31 P.J. Davis, Circulant matrix, Wiley, New York, 1979.

X T HHRBR BIRERMNTIC
T 5 B
(LERERE R

] -2

A% ST 9T T X B R 5080 4 M BT R S SE R SR R ME (RS SR R . BT E
IR . SN RN BN A G H R B E R, AXMERRET 2 ]1F
A iX .

— 473 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



