Globally Asymptotic Behaviour of a Class of Integro-differential Equations*

Hu Shigeng

(Huazhong University of Science and Technology, Wuhan)

§ | Introduction

A number of problems in ecology and economics leads us to consider the integro-differential equation

$$\dot{x}(t) = \text{diag}(x(t)) \{ a + \text{diag}(b) x(t) + \int_{a}^{b} [d\mu(s)] x(t+s) \},$$
 (1)

where $\operatorname{diag}(x(t)) = \operatorname{diag}(x_1(t), \dots, x_n(t))$, $a, b \in \mathbb{R}^n$, $r \in \mathbb{R}_+$, μ is an $\mathbb{R}^{n \times n}$ -valued measure on [-r, 0], $\mathbb{R}^{n \times n} = L(\mathbb{R}^n)$. The equation (1) may be considered in the setting of the functional differential equation

$$\dot{x}(t) = \operatorname{diag}(x(t))g(t,x_t), \tag{2}$$

where x_t denotes the function $s \mapsto x(t+s)$ on (-r, 0). As r=0, the equation (2) becomes the well-known Kolmogorov model in ecology. Smith [8] studied the equation

$$\dot{x}(t) = f(t, x_t) \tag{3}$$

under some assumption of monotonicity about f, thus, in some extent, generalized the monotone flow theory of Hirsch^[2]. In [3], we generalized the results of Smith^[8] and gave some criteria to determine global asymptotic stability of functional differential equations with certain monotonicity property. In this paper, we apply the results and methods of [8] and [3] to explain the asymptotic behaviour of the equation (1).

§ 2 Preliminaries

Let C denote the Banach space $C([-r,0],\mathbb{R}^n)$ with the sup norm. In \mathbb{R}^n ($\mathbb{R}^{n\times n}$ or C, resp.) we use the order \leq induced by the cone $\mathbb{R}^n_+(\mathbb{R}^{n\times n}_+)$ or $C_+=C([-r,0],\mathbb{R}^n_+)$, resp.). We write x < y iff $y - x \in \mathring{\mathbb{R}}^n_+(\mathring{\mathbb{R}}^n_+)$ denotes the interior of \mathbb{R}^n_+) and $\varphi < \psi$ iff $\psi - \varphi \in C^\circ_+$.

First consider the equation (3). Suppose that $\Omega \subset \mathbb{R} \times C$ is an open set on which $f(t,\varphi)$ and $D_{\varphi}f(t,\varphi)$ are continuous. Then (3) has exactly one solution

^{. *} Received May 15, 1989.

 $x = x(t, \sigma, \varphi)$ through every $(\sigma, \varphi) \in \Omega^{[1]}$, denote this solution also by $x(\sigma, \varphi)$ or $x(\sigma, \varphi, f)$.

Definition I If for any $(t, \varphi) \in \Omega$, $u \in C_+$, $u_i(0) = 0$ for some i implies $D_{\varphi} f_i(t, \varphi)$ $u \ge 0$, then f is said to be cooperative.

Lemma | Suppose $f(t,\varphi) \leq \overline{f}(t,\varphi)$ for all $(t,\varphi) \in \Omega$, f or \overline{f} is cooperative. For given (σ,φ) , $(\sigma,\psi) \in \Omega$, if $\varphi \leq \psi$, then $x_t(\sigma,\varphi,f) \leq x_t(\sigma,\psi,\overline{f})$ for such $t \geq \sigma$ at which both $x_t(\sigma,\varphi,f)$ and $x_t(\sigma,\psi,\overline{f})$ are defined.

This is an immediate consequence of Proposition 1.1 in [8].

Below we suppose

$$f(t,\varphi) = \operatorname{diag}(\varphi(0)) g(t,\varphi), \quad (t,\varphi) \in \Omega, \tag{4}$$

both g and $D_{\bullet}g$ are continuous on Ω . An easy calculation gives

$$D_{\bullet}f_{i}(t,\varphi) u = \varphi_{i}(0) D_{\bullet}g_{i}(t,\varphi) u + u_{i}(0) g_{i}(t,\varphi), \quad i = 1, 2, \dots, n.$$
 (5)

(5) together with Definition 1 imply that, if $\Omega \subset \mathbb{R} \times C_+$, then f is cooperative iff g is cooperative. In the case that g is cooperative, Lemma 1 implies (put $f = \overline{f}$) $x_t(\sigma, \varphi) \leq x_t(\sigma, \psi)$ for (σ, φ) , $(\sigma, \psi) \in \Omega$, with $0 \leq \varphi \leq \psi$ and $t \geq \sigma$, whenever both $x_t(\sigma, \varphi)$ and $x_t(\sigma, \psi)$ are defined. In particular, $x_t(\sigma, \varphi) \geq 0$ for $\varphi \geq 0$ and $t \geq \sigma$, since $x(t) \equiv 0$ satisfies the equation (2).

Lemma 2 Let x = x(t) be a solution of (2) defined on $[\sigma, \rho)$. If $x_i(t_0) > 0$ $(x_i(t_0) < 0$, resp.) for some $t_0 \in [\sigma, \rho)$ and some index i, then $x_i(t) > 0$ $(x_i(t) < 0$, resp.) for all $t \in [\sigma, \rho)$. Hence $x(t_0) > 0$ for some $t_0 \in [\sigma, \rho)$ implies x(t) > 0 on the global interval $[\sigma, \rho)$.

Proof It sufficies to consider the case that $x_i(t_0) > 0$. By the continuity of x(t), there exists a maximal $\tau \in (t_0, \rho)$ such that $x_i(t) > 0$ for all $t \in (t_0, \tau)$. We claim $\tau = \rho$. For if $\tau < \rho$, then $x_i(\tau) = 0$, so that

$$\int_{t_0}^{\tau} g_i(t, x_t) dt = \int_{t_0}^{\tau} \frac{\dot{x}_i(t)}{x_i(t)} dt = \lim_{t \to \tau} \ln \frac{x_i(t)}{x_i(t_0)} = -\infty,$$

this contradicts the continuity of $g_i(t,x_i)$. Therefore $x_i(t)>0$ on (t_0,ρ) . Similarly we have $x_i(t)>0$ for all $t\in(\sigma,t_0)$.

Lemma 3 Let $f: C \to \mathbb{R}^n$ be a completely continuous C^1 map, and let $x(t) = x(t, 0, \varphi)$ be a solution of the equation

$$\dot{x}(t) = f(x_t) \tag{6}$$

If x(t) assumes its values in a fixed compact subset of \mathbb{R}^n , then x(t) is defined on $[0,\infty)$. If, in addition, $x(t_k) \to \overline{x}$ for some sequence $t_k \to \infty$ as $k \to \infty$, then (6) has a bounded solution y(t) on \mathbb{R} with $y(0) = \overline{x}$.

Proof The former conclusion follows immediately from [1, ch.2, Th. 3.2]. To prove the latter, let $x^k(t) = x(t_k + t)$ for $t \ge -t_k$ and $k = 1, 2, \cdots$, then the sequence $\{x^j | j \ge k\}$ is uniformly bounded and equicontinuous on $[-t_k, \infty)$. Hence we may assume that $\{x^k\}$ compact uniformly converges to a continuous function

y(t) on **R** as $k \to \infty$. Clearly $y(0) = \overline{x}$ and x^k satisfies

$$x^{k}(t) = x(t_{k}) + \int_{0}^{t} f(x_{\tau}^{k}) d\tau, \ t \ge -t_{k}, \ k = 1, 2, \dots.$$
 (7)

Moreover, $||x_t^k - y_t|| \to 0$ as $k \to \infty$ for t in any fixed compact interval. Thus, letting $k \to \infty$ in (7), we obtain

$$y(t) = \overline{x} + \int_0^t f(y_t) d\tau$$

for any $t \in \mathbb{R}$, so that $\dot{y}(t) = f(y_t) (t \in \mathbb{R})$, as required.

§ 3 Main Results

Now consider (1) and the equation

$$\dot{y}(t) = \text{diag}(y(t)) \{a + \text{diag}(b) y(t) + \int_{-\infty}^{0} (dv(s)) y(t+s) \}$$
, (8)

where $v = (v_{ij})$, $v_{ij} = |\mu_{ij}|$ is the variation of the measure μ_{ij} for $i, j = 1, 2, \dots, n$ (see [4]), $\mu = (\mu_{ij})$ as in (1). We suppose $\mu_{ii}(\{0\}) = 0$ ($1 \le i \le n$). Let $A = (a_{ij}) = \int_{-r}^{0} dv$ and B = diag(b) + A, then $A \ge 0$ and B is essentially nonnegative, i.e., $\lambda I + B \ge 0$ for some $\lambda \in \mathbb{R}$. For any $\varphi \in C$, we denote the solutions through $(0, \varphi)$ of (1) and (8) by $x(t,\varphi)$ and $y(t,\varphi)$, respectively.

Theorem | Suppose a>0, $\sum_{j}a_{ij}<-b_{i}$ ($i=1,2,\dots,n$), $b=(b_{i})$. Then B^{-1} exists, $y^{\bullet}=-B^{-1}a>0$ and $\lim_{t\to\infty}y(t,\varphi)=y^{\bullet}$ for all $\varphi\in C_{+}^{\circ}$.

Proof First note that $b_i < -\sum_j a_{ij} \le 0$ $(1 \le i \le n)$, since $A \ge 0$. Let $D = \text{diag}(-b_1^{-1}, \dots, b_n^{-1})$, M = DA and let $\|\cdot\|$ denote the max norm in \mathbb{R}^n . Then $\|M\| = \max_{\|x\|=1} \|Mx\| = \max_{\|x\|=1, \ 1 \le i \le n} |\sum_j b_i^{-1} a_{ij} x_j| < 1$,

hence $s(M) = \frac{\text{def}}{m} \max \{ \text{Re } \lambda | \lambda \in \sigma(M) \} < 1$. This implies s(DB) = s(M - I) = s(M) - 1 < 0. The fact that B is essentially nonnegative and $-b_i^{-1} > 0$ $(1 \le i \le n)$ together with (7,Th. 2.3) implies s(B) < 0, hence B is invertible and $y^* = -B^{-1}a > 0$ by [6, th. 1.2].

Below fix $\varphi \in C_+^{\circ}$ and let $y(t) = y(t, \varphi)$, we claim $\lim_{t \to \infty} y(t) = y^*$. We rewrite (8) as $\dot{y}(t) = f(y_t)$, where

$$f(u) = diag(u(0)) (a + Lu);$$

$$Lu = diag(b) u(0) + \int_{0}^{0} [dv(s)] u(s), \quad u \in C.$$
(9)

It is easy to see that $f: C \to \mathbb{R}^n$ is completely continuous, since $L: C \to \mathbb{R}^n$ is continuous and linear. Moreover, f is also cooparative since $v_{ij} \ge 0$. Let $x \mapsto \hat{x}$ denote the natural embedding from \mathbb{R}^n into C, as in [8], then

$$f(\hat{y}) = \operatorname{diag}(y) (a + By), \quad y \in \mathbb{R}^{n}, \tag{10}$$

so that $f(\hat{y}^*) = 0$, i.e., y^* is an equilibrium point of (8). Choose an $\varepsilon > 0$ small enough and an $\tau > 1$ large enough such that $u^{\varepsilon} < \varphi < u^{\tau}$ and $f(u^{\varepsilon}) = \operatorname{diag}(y^{\varepsilon}) < (a + By^{\varepsilon}) > 0$, where $u^{\varepsilon} = \hat{y^{\varepsilon}}$, $y^{\varepsilon} = \varepsilon y^*$. By [3, th.1], $y(t, u^{\varepsilon})$ is increasing in $t \ge 0$. The above facts together with Lemma 1 imply

$$\begin{cases}
y' \leq y(t, u') \leq y^* \leq y(t, u'), \\
y(t, u') \leq y(t) \leq y(t, u'),
\end{cases}$$
(11)

for those $t \ge 0$ at which all functions in (11) are defined. By (11) and Lemma 3, $y(t, u^e)$ is defined and bounded on $(0, \infty)$, hence $p = \lim_{t \to \infty} y(t, u^e)$ exists because of its monotonicity. It follows that $f(\hat{p}) = 0$, and so $p = -B^{-1}a = y^*$ by f(10). On the other hand, since

 $f(u^{\tau}) = \operatorname{diag}(y^{\tau}) \ (a + \tau B y^*) = (1 - \tau) \operatorname{diag}(y^{\tau}) \ a < 0 ,$ $y(t, u^{\tau}) \text{ is decreasing in } t \ge 0 \text{ by [3,Th.1]. An argument similar to the above one gives } \lim_{t \to \infty} y(t, u^{\tau}) = y^*. \text{ This result together with } \lim_{t \to \infty} y(t, u^{t}) = y^*, \text{ (11)}$ and Lemma 3 implies $\lim_{t \to \infty} y(t) = y^*, \text{ as required.}$

The equation (1) may be written as $\dot{x}(t) = \overline{f}(x_t)$ if we define $\overline{f}: C \to \mathbb{R}^n$ by $\overline{f}(u) = \operatorname{diag}(u(0)) \{a + \operatorname{diag}(b) u(0) + \int_0^0 [d\mu(s)] u(s) \}$. (12)

Clearly, \overline{f} is also completely continuous and $\overline{f}(u) \leq f(u)$ for all $u \in C_+$, where f is defined as in (9). Let $P = \int_{-r}^{0} \mathrm{d}\mu$, $Q = \mathrm{diag}(b) + P$. An argument similar to the proof of Theorem 1 shows that if a > 0, $\sum_{j} a_{ij} < -b_i$ $(1 \leq i \leq n)$, then Q^{-1} exists, but it is not necessarily $x^* = -Q^{-1}a > 0$.

Theorem 2 Suppose a>0 and $\sum_{j}a_{ij}<-b_i$ $(1\leq i\leq n)$. If $x^*=-Q^{-1}a>0$, then for any $\varphi\in C^c_+$ we have $\lim_{t\to\infty}x(t,\varphi)=x^*$, unless

$$\inf_{t>0} d(x(t,\varphi),\partial \mathbf{R}_{+}^{n}) = 0.$$
 (13)

Proof Fix $\varphi \in C_+^\circ$ and let $x(t) = x(t, \varphi)$. Suppose (13) fails, we prove $\lim_{t \to \infty} x(t) = x^*$. By Lemma 2, x(t) > 0 on the whole domain. By Lamma 1, $x(t) \le y(t, \varphi)$, hence x(t) is bounded since $y(t, \varphi)$ is bounded by Theorem 1. By Lamma 3, x(t) is defined on $[0, \infty)$. It suffices to prove that if $t_k \to \infty$ and $x(t_k) \to \overline{x}$, then $\overline{x} = x^*$. By Lemma 3, (1) has a bounded solution y(t) on \mathbb{R} with $y(0) = \overline{x}$. Note that $\overline{x} > 0$, otherwise (13) follows. Thus y(t) > 0 for all $t \in \mathbb{R}$ by Lemma 2. Let $z(t) = y(t) - x^*$. An immediate computation gives

$$\dot{z}_{i}(t) = y_{i}(t) \left[b_{i} z_{i}(t) + \sum_{i} \int_{-r}^{0} z_{j}(t+s) \, \mathrm{d}\mu_{ij}(s) \right], \quad i = 1, 2, \dots, n.$$
 (14)

Let $K = \sup_{t \le 0} ||z(t)||$, $||\cdot||$ denotes the max norm in \mathbb{R}^n . We claim that $||z(t)|| \le K$

for all $t \in \mathbb{R}$. Otherwise, $||z(\tau)|| > K$ for some $\tau > 0$, hence we may choose a smallest $\sigma \in (0, \tau)$ such that $|z_i(\sigma)| = \max_{0 \le t \le \tau} ||z(t)||$ for some i. We assume, e.g., $z_i(\sigma)$

>0, and so $||z(t)|| < z_i(\sigma)$ for all $t < \sigma$. But (14) implies

$$\frac{\dot{z}_i(\sigma)}{y_i(\sigma)} = b_i z_i(\sigma) + \sum_j \int_{-r}^0 z_j(\sigma + s) \, \mathrm{d}\mu_{ij}(s)$$

$$\leq b_i z_i(\sigma) + z_i(\sigma) \sum_i \int_{-r}^{0} dv_{ij} = z_i(\sigma) (b_i + \sum_i a_{ij}) < 0,$$

this means $z_i(t)$ is strictly decreasing at $t = \sigma$, contradicts the choice of σ .

Replacing z(t) by $z(\tau+t)$ we obtain

$$||z(t)|| \leq \sup_{s \leq t} ||z(s)|| \tag{15}$$

for all t, $\tau \in \mathbb{R}$. Thus, to prove $\overline{x} = x^*$, i.e., z(0) = 0, it suffices to show $\lim_{t \to -\infty} z(0) = 0$. Let

$$p_i = \underline{\lim}_{t \to -\infty} z_i(t)$$
, $q_i = \overline{\lim}_{t \to -\infty} z_i(t)$, $p = \min_i p_i$, $q = \max_i q_i$.

We need only to prove p=q=0. If this is not valid, then there are at most three possible cases: (i) q>0, $q\geq -p$; (ii) 0< q< -p; (iii) $q\leq 0$, p<0. By considering -z(t) instead of z(t), the cases (ii) and (iii) can be reduced to the case (i), hence it suffices to consider the case (i). Suppose $q=q_i$, for given an $\varepsilon>0$ small enough, choose $\tau>0$ such that

$$|z_j(t)| \le q + \varepsilon$$
 for all $t < -\tau$ and $j = 1, 2, \dots, n$. (16)

If $\dot{z}_i(t) \neq 0$ for all sufficiently small t, then $z_i(t)$ monotonously converges to q as $t \rightarrow -\infty$, hence we may assume $|z_i(t) - q| < \varepsilon$ for all $t < -\tau$. This together with (16) implies

$$\frac{\dot{z}_{i}(t)}{y_{i}(t)} = b_{i}z_{i}(t) + \sum_{j} \int_{-r}^{0} z_{j}(t+s) d\mu_{ij}(s)$$

$$\leq b_{i}(q-\varepsilon) + (q+\varepsilon) \sum_{j} a_{ij}$$

$$= q(b_{i} + \sum_{j} a_{ij}) + \varepsilon(\sum_{j} a_{ij} - b_{i}) = \beta_{i} < 0$$

(Note that ε is small enough), it follows that

$$\ln \frac{y_i(-\tau)}{q+x_i^*} = \int_{-\infty}^{-\tau} \frac{\dot{y}_i(t)}{y_i(t)} dt \le \int_{-\infty}^{-\tau} \beta_i dt = -\infty,$$

a contradiction.

On the other hand, if there is a sequence $t_k \to -\infty$ such that $\dot{z}_i(t_k) = 0$, then $\{t_k\}$ can be chosen such that $z_i(t_k) \to q$ as $k \to \infty$. Thus, for sufficiently large k we have

$$0 = \frac{\dot{z}_i(t_k)}{y_i(t_k)} = b_i z_i(t_k) + \sum_j \int_{-r}^0 z_j(t_k + s) \, \mathrm{d}\mu_{ij}(s)$$

$$\leq b_i(q - \varepsilon) + (q + \varepsilon) \sum_i a_{ij} \leq 0,$$

again a contradiction. Thus, the theorem is proved.

§ 4 Applications

The results of this paper can be applied to the differential difference equation

$$\dot{x}(t) = \text{diag}(x(t)) \left[a + \text{diag}(b) \ x(t) + \sum_{k=0}^{N} A_k x(t - r_k) \right], \tag{17}$$

where $a,b\in\mathbb{R}^n$, a>0, $A_k=(a_{ij}^k)\in\mathbb{R}^{n\times n}$, $a_{ii}^0=0$ ($i,j=1,2,\cdots,n$, $k=0,1,\cdots,N$), $0=r_0$ $< r_1 < \cdots < r_N = r$. We may rewrite (17) in the standard form (1) by letting $\mu=\sum_{k=0}^N A_k \delta_k$, where δ_k denotes the Dirac measure at $s=-r_k$ for $k=0,1,\cdots,N$. Using the notations in §3, we have

$$\mu_{ij} = \sum_{k=0}^{N} a_{ij}^{k} \delta_{k}, \quad v_{ij} = |\mu_{ij}| = \sum_{k=0}^{N} |a_{ij}^{k}| \delta_{k},$$

$$\int_{-r}^{0} d\mu = \sum_{k=0}^{N} A_{k}, \quad Q = diag(b) + \sum_{k=0}^{N} A_{k}.$$

Thus, we can apply Theorem 1 and Theorem 2 to obtain the following conclusion: If

$$\sum_{j=1}^{n} \sum_{k=0}^{N} |a_{ij}^{k}| < -b_{i} \text{ for } i = 1, 2, \dots, n.$$
 (18)

and $x^* = -(\operatorname{diag}(b) + \sum_{k=0}^{N} A_k)^{-1} a > 0$, then any positive solution x(t) of (17) converges to x^* as $t \to \infty$ unless $\inf_{t>0} \operatorname{d}(x(t), \partial \mathbf{R}_+^n) = 0$, if, in addition, $A_k \ge 0$ for $k = 0, 1, \dots, N$, N, then any positive solution of (17) necessarily converges to x^* as $t \to \infty$.

References

- [1] Hale, J., Theory of functional differential equations, Springer-Verlag, New York, 1977.
- [2] Hirsch, M. W., Bull. Amer. Math. Soc., 11(1984), 1-64.
- [3] Hu Shigeng, Math. Appl., 2:1(1989), 61-66.
- [4] —, An introduction to modern analysis, Huazhong University of Science and Technology Press, 1989.
- [5] Seifert, G., Nonlinear Anal., 11(1987), 1051—1059.
- [6] Smith, H., SIAM J. Appl. Math., 46(1986), 368-375.
- [7] —, SIAM J. Appl. Math., 46(1986), 856—874.
- [8] —, J. Diff. Eqns., 66(1987), 420-442.

一类积微分方程的全局渐近状态

胡适耕

(华中理工大学数学系,武汉)

摘 要

本文考虑形如 $\dot{x}(t) = \mathrm{diag}(x(t))\{a + \mathrm{diag}(b)x(t) + \int_{-r}^{0} [\mathrm{d}\mu(s)]x(t+s)\}$ 的微积分方程。在对 μ 的一定假设下,我们证明了:所述方程的任何正解或者渐近于同一平衡状态,或者能任意接近正卦限 \mathbf{R}_{-}^{n} 的边界。

-- 90 --