Journal of Mathematical Research and Exposition
Vol. 11l No.1 Feb. 1991

Globally Asymptotic Behaviour of a Class of

Integro-differential Equations*

Hu Shigeng

(Huazhong University of Science and Technology, Wuhan)

§ | Introduction

™~ A number of problems in ecology and economics leads us to consider the

integro-differential equation

. 0 ’
(1) = diag(x(1)) {a+ diag(h) x (1) + [ (dM($)Ix(t+9)]}, (1)

where diag(x (1)) = diag (x,(1), ==, x,(£)), a,beR" . reR,, u is an R™*valued
measure on [-r,0), R” "= L(R". The equation (1) may be considered inthe =
setting of the functional differgntial equation '

X(r) =diag(x(t)) gle,x,), (2)
where x, denotes the function st>x(r+s) on (~r,0]). As r=0, the equation (2)
becames the well-known Kolmogorov model in ecology: Smithts_q studied the
equation ~_ ‘

x() = flt, x.) ‘ (3)
under some assumption of ~monotonicity about f, thus, in some extent, gene-
ralized the monotoﬁe flow theory of Hirsch'?’. In [31], we generalized the
results of Smith"®’ and gave some criteria to determine global asymptotic sta-
bility of functional differential equations with certain monotonicity property. In
this paper, we apply the results and methods of [ 8] and [ 3] to explain the
asymptotic behaviour of the equation (1).

:§ 2 Preliminaries

nxXn

Let C denote the Banach space C({-r,0],R") with the sup norm. In R" (R
or C, resp,) we use the order < induced by the cone R (R "or C,=C((~r,0),
RY, resp.).\ We write x<y iff y—»x_eﬁ: (R" denotes the interior of R?) and ¢<
¥ iff ¢- eC. ‘ -
. First consider the equation (3), Suppose that QCRXC is an open set on
which f(z,9¢) and D, f(r, @) are continuous. Then (3 ) has exactly one solution
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x=x(t,o, ¢) through every (o, qz)eQ[‘], denote this solution also by x(o, ¢) or
x(a, 0, f). | )

Definition | If for any (r,9)€Q, ucC,, u(0)=0 for some i implies D,f(z,
@) u>0, then f is said to be cooperative.

Lemma | Suppose: f(t,9) < f(r,p) for all (t,9)€Q, f-or f is cooperative.
For given (o,9), (0,¢) eQ, if o<y, then x,(o, ¢, H<x, (a ¥, f) for such >0
at which both x(o, @, f) and x,(a, ¥, f) are defined.

This is an immediate consequence of Proposition 1.1 in [ 8 ].

Below we suppose

f(t,p)=diag(@(0)) g(r, @), (t,9)eQ, (4)
both ¢ and D,g are continuous on Q. An. easy calculation gives
D, f(t,0)u=0 0)D,glt,@u+uf0)gt,p), i=1,2, =, n. (5)

(5) together with Definition 1 imply that, if QCRXC
iff g is cooperative. In the case that g is cooperative, Lemma 1 implies (put
A =0 x(a,9)<x/ a0,y for (a,9), (o,p)eQ, with 0<Lp<y and >0, whenever
both x (o, ¢) and x,(o, ¢) are defined. In particular, x/(o, ¢) >0 for ¢=>0 and
t>o0, since x(¢)=0 satisfies the equation ( 2).

Lemma 2 Let x=x(¢) be a solution of (2) defined on (o, );). If x,(15) >0
(x,(1,)<0, resp.) for some 140, p) and some index i, then x,(1r) >0 (x,(r)<0,
resp.) for all re(o, p). Hence x(t,)>0 for some t,e(o, p) implies x(£)>0 on

then f is cooperative

+

the global interval (o, p).

Proof It sufficies to consider the case that x,(to)>0. By the contmulty of
x(t), there exists a maximal 7€(zy,p] such that x,(z) >0 for all r€(ty,7). We
claim r=p, For if 1< p, then x/(1) =0, so that '

_ xl( ) _ x{)
fat,xdi= [ rosdi= 13?3‘3‘ x (1)

this contradicts the continuity of gJ(r,x,). Therefore x,(t)>0 on (#¢,p). Simila-
'rily we have x,(r)>0 for all re(o,1t,). '

Lemma 3 Let f: C—»R" be a completely continuous C' map, and let x(r)=
x (1,0, t'p)'be““a solution of the equation

i | ) = flx,)y, - (6)
If x(¢) assumes its values in a fixed compact subset of R", then x(z) is defi-
ned on [0,00). If, in addition, x(z,)—>x for some sequence f,—~o0-as k>0,
then (6) has a bounded solution y(z) on" R with y(0) ='x.

Proof The former conclusion follows immedi\’étely from [1, ch.2, Th.3.2].
To prove the latter, let x“(¢#)=x(¢,+1) for t>~r, and k=1,2, -, then the se-
duence {x’ljzk'} is uniformly bounded and equicontinuous on [ -¢,,c0). Hence
we may assume that {x*} compact uniformly converges to a continuous function



y(t) on R as k—>oo, Clearly y(0)=x and x* satisfies
0 = x() + [ DT, 21, k= 1,2, 7)

Moreover, ||xf~ y| =0 as k—=oco for ¢ in any fixed compact interval. Thus,
letting k—>co in (7 ), we obtain

y=x+ [ flynd
y(t —x+f0f\y,) 7
for any reR, so that p(r) = f€y) (t¢R), as required.
§ 3 Main Results
Now consider ( 1) and the equation
0 .
y(0) = diag(y (1) {a+ diag(b)y() + J'_r[dv(s)]y(t+ Y, (8)

where v= (v;), v;=|u,| is the variation of the measure y; for i, j=1,2,,n
(see [4]), u=(u;) as in (1). We suppose #,({0})=0(1<i<n). Let A= (a;;)=

0 ‘ .
Ldv and B=diag(b) + A, then A>0 and B is essentially monnegative, i.e., i/

+ B>0 for some A¢R. For any @¢e¢C, we denote the solutions through (0, @) of
(1) and (8) by x(r,¢) and. y(r,¢@), respectively.
Theorem | Suppose a >0, 2oa,; < —b; (i=1,2,,m), b=(b;). Then B! exists,
J v

y*=-B'a>0 and }irgy(t,q)):_y* for all @eC:.

. Proof First note that << - Y a,;<0 (1<i<nm), since 4>>0. Let D=diag(—b, ,
J

«e, b,'), M= DA and let ||-| denote the max norm in R". Then

M| = max|Mx|= ma b <1,
M1 = maximal = max |55,

- hence s(M) max{Re 1| Aca(M) } <1. This implies s(DB)=s(M - 1)=s(M) - 1<0.,
The fact that B is essentially nonnegative and - b,'>0 (1 <i<n) together with
{7,Th. 2.3 implies s(B)<0, hence B is invertible and y*= - B'a>0 by [6,th.1.2].
' Below fix peC; ' and let y(1) = y(t,p), we claim limy(¢e)=y*.  We rewrite

def

(8) as'}('t),:"f(y,), where
fw) = diag(u(0)) (a+ Lw; (9)

Lu= diag(h) u(0) + [ (dv(s) Juls), -ueC. -

It is easy to. see that f: C—R" is completely continuous, since L:C—~R" is con- -

- tinuous and linear. Moreover, f is also cooparative since v;>0. Let xi~>§ de-
" note the natural embedding from R" into C, as in [ 8 ], then
f(%) =diag(y) (a+ By), peR", (10)
— 87 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



so that f(f*)zo, i.e., y* is an equilibrium point of (8 ). Choose an &£>0
small enough and an 7>>1 large enough such that #<@<u«" and f(u’)=diag(y’).
(a+ By®)>0, where u'=}/z>, y'=ey*. By (3,th.1), y(r,u’) is increasing in >0+
The above facts together with Lemma 1 imply
Y<yluH) <y*<y(t,u’),
{ vy, u)<y()<y(t,u'),
for those r>>0 at which all functions in (11) are defined. By (11) and Lemma
3, y(t,u’) is defined and bounded on [0,°9c), hence p= llirgy(t,u’) exists be-

/
(1D

cause of its m(;notonicity. It follows that f( 9):0, and so p= - B la=y* by~(10).
On the other hand, since

_ fud') = diag(y") (a+1By* = (1 - D diag(y)a<0,

y(t,u’) is decreasing .in t=0 by [3,Th.1]. An argument similar to the above
one gives }ir;}y(t,u’):y’. This result together with ’lirgloy(t,u”):y*, an,

and Lemma 3 implies tlirgloy(t) = y* as required.
The equation (1) may be written as x(¢) = 7(x,) if we define f C—R" by
Fw) = diag (u(0)) (a+ diag(5)u(0) + [ (duls) Ju(s)) .  aw
Clearly, f is also completely continuous and f(x) < f(u) for all ueC,, where f
is defined as in (9). Let P= I_Ordu, Q=diag(b) + P. An argument similar to the
.proof of Theorem 1 shows that if a>0, } a,;< -b, (1<i<<n), then ’Q*"exists,
j

but it is not necessarily x*= - Q 'a>0.
Theorem 2 Suppose a>0 and Ya;,;< - b, (1<i<n). If x*=~Q 'a>0, then
7
for any @eC, we have limx(s,@)=x*, unless
. | et -
infd(x(z,p),0R") = 0. (13)
. t>0
Proof Fix ¢€¢C? and let x(#) = x(¢,¢). Suppose (13) fails, we prove limx(r)
- t— oo

=x*. By Lemma 2, x(£)>>0 on the whole domain. By Lamma 1, x(¢)<<y(r,p),
hence x(¢) is bounded since y(t,p) is bounded by Theorem 1. By Lamma 3, .
x(¢) is defined on [0,00). It suffices to prove that if 7,0 and x(¢,)—>x, then
x=x*. By Lemma 3, (1) has a bounded solution »(z) on R with y(0)= x.Note
that x>0, otherwise (13) follows. Thus y(r) >0 for all t¢R by Lemma 2. Let
z(t) = y(t) — x*. An immediate computation gives

200 = 30 bzl + T [ 2+ ) Quiy(9) Ty 1= 1,2, w0n, 1. (14)

7 -7

Let K=sup|z(r) |, |+| denotes the max norm in R". We claim that |z(s) |<K

10
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for all reR. Otherwise, || z(1) |[>K for some 71>>0, hence we may choose a smal-

lest o€(0, 1) such, that |z,(o) | =Or2’a<xy|| 2(1)’|| for some i. We assume, €.g., z,(0)

>0, and so || z(¢) | <z(o) for all 1<o. But (14) implies
z:(a) '
y(o)

= bz + X[ 2+ 9 du,(9
j -r

(
<bizd o)+ 2z T [ dv,= z(0) (b + Ta,p <0,
7o 7

this means z,r) is strictly decreasing at r=o0, contradicts the choice of o.

Replacing z(7) by z(1+t) we obtain

200 [ <supfz(s | , (15)
s<t .
for all ¢,7¢R. Thus, to prove x=x*, i.e., z(0) =0, it suffices to show lim z(0)
> —0o
= =0. Let
pi=lim z,(s), ¢;= lim z(z), p=minp,, g¢g=maxg.
{——oo t—> —~ 00 i i .
We need only to prove p=gqg=0. If this is not valid, then there are at most three
possible cases: (i) ¢>0, ¢=>— p; (i) 0<<g<- p; (iii) ¢<0, p<0. By considering
- z(¢) instead of z(r), the cases (ii) and (iii) can be reduced to the case (i) ,
hence it suffices to consider the case (i). Suppose ¢g=g;, for given an &>( small
enough, choose 7>0 such that,
[z, (0)[<g+¢ for all r<<-7 and j=1,2, e, n, (16)
If z2,(¢+)F0 for all sufficiently small ¢, then z,(r) monotonously converges to q as
t—— oo, hence we may assume |z,(t) —q|<e for all (< - 1. This together with
(16) implies -
ég(t) _ ¢
O bz,(¢) + ; J:rz,(t+ ) du,;(s)
<b(g-¢e)+(g+e) ) a,
j
J J
(Note that & is small enough), it follows that
y(=1) _ Tyt PP
sy = Loy =L pde= ==,
a contradiction. )
~ On the other hand, if there is a sequence r,=-°c such that 2/(r,) =0, then
{t,} can be chosen such that z(r,) »>q as k—~oo. Thus, for sufficiently large k
we have —
_ 2,(’]{) _ 0
0 —_})i—(;;:s__ b,-Z,-(tk) + ;J“"z’i(’k'}' s)d/‘,‘j(s)

Sb,(q— & + (q+ &) Zaij'<0’ .
J

again a contradiction. Thus, the theorem is proved .

J— 89 —
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§ 4 Applications
The results of this paper can be applied to the differential difference equation
N
x(1) =diag(x(1)) (a+ diag(h) x(1) + Y A x(t—r,)], a7
k=0

where a,b¢R", a>0, A,= (af_,-) eR"x"v,’ a?,z 00 ,j=1,2,+,n, k=0,1,¢¢, N), 0=1rp,
<n<eery=r. We may rewrite (17) in the standard form (1) by letting u=

N ‘n~ .
> A4,0,, where J, denotes the Dirac measure at s= —r, for k=0, 1, -, N. Using
k=0

the notations in §3, we have
N, N
Hij = 2a1j6k9 Vij=|/‘1j|= Zlaijidk ’
i=0 v %=0

0 N N
J‘ du= ZA,‘ s Q:diag(b)+ ZAk.
-r k=0 k=0
Thus, we can apply Theorem 1 and Theorem 2 to obtain the following conclu-
sion: If

n N
Z“‘}:O|af,-|<—b,. for i=1,2, «se,n, (18)
gl _

N i !
and x*= - (diag(® + Y_ A,) 'a>0, then any positive solution x(z) of (17) conver-
: k=0"
ges to x* as r—>oo unless i;lgd(x(t) . OR:) =0, if, in addition, 4,2>0 for k= 0,1, «=s, N,
!
N, then any positive solution of (17) necessarily converges to x* as t— oo,
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