Second-Order Optimality Conditions for a Class of Quasidifferentiable Functions*

Tan Zhong fu

(Dalian University of Technology, Dalian)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously quasidifferentiable.

Definition | The upper and lower second-order d-directional derivatives of f at x are defined, respectively, by $f''_+(x, v^*, d) := \overline{\lim_{k \to \infty}} \langle v_k + \overline{v_k} - v^*, x_k - x \rangle / t_k^2$, $f''_-(x, v^*, d) := \overline{\lim_{k \to \infty}} \langle v_k + \overline{v_k} - v^*, x_k - x \rangle / t_k^2$, where (i) $t_k > 0$, $t_k > 0$, $t_k > 0$, where $t_k > 0$, $t_k > 0$

We say that a continuously quasidifferentiable function f satisfies condition C^0 at x if there exists a δ -neighborhood $N_\delta(x)$ such that $\bigcup_{y \in N_\delta(x)} (\partial f(y) + \overline{\partial} f(y))$ is bounded in a certain sense.

Theorem ! Let x^* be a local minimizer of f(x) and $d \in \mathbb{R}^n$. Suppose f satisfies the condition C^0 at x^* and $\max\{\langle v,d \rangle | v \in \partial_d^* f(x^*)\} = 0$. Then there exists a $v^* \in \partial_d^* f(x^*)$ satisfying $\langle v^*, d \rangle = 0$ and $f_+''(x^*, v^*, d) \ge 0$.

Theorem 2 Suppose f satisfies the condition C^0 at x^* and $d \in \mathbb{R}^n$ is an unit vector. If $\langle v, d \rangle \geq 0$, $\forall v \in \partial_d f(x^*)$ and $f''(x^*, 0, d) > 0$, then x^* is a local minimizer of f(x).

Consider the following constrained programming

(P)
$$\min\{g_0(x) | g_i(x) \le 0 \ (i = 1, \dots, m), g_j(x) = 0 \ (j = m+1, \dots, q)\}$$
, where $g_i(l = 0, 1, \dots, q)$ satisfy the condition C^0 at $x \in \mathbb{R}^n$.

Theorem 3 Let x^* be a local minimizer of (P) and $d \in \mathbb{R}^n$. Suppose $\max\{\langle v, d \rangle | v \in \partial_d^* L(x^*) \} = 0$. Then there exists a $v^* \in \partial_d^* L(x^*)$ satisfying $\langle v^*, d \rangle = 0$ and $L''(x^*, v^*, d) \ge 0$, where $L(x) = \max\{u_0(g_0(x) - g_0(x^*)) + \sum_{i=1}^q u_i g_i(x) | u_i \ge 0, i = 0, 1, \dots, m, \sum_{i=0}^q u_i^2 = 1\}$.

Theorem 4 Let x^* be a feasible point of (P) and d be an arbitrary unit vector in \mathbb{R}^n . If $\langle v, d \rangle \geq 0$, $\forall v \in \partial_d \overline{L}(x^*)$ and $L''(x^*, 0, d) > 0$ when there exists a $v_0 \in \partial_d g_0(x^*)$ satisfying $\langle v_0, d \rangle \leq 0$, then x^* is a local minimizer of (P), where $m^* \geq 0$, $r \geq 0$ $\overline{L}(x) = \max\{g_0(x) - g_0(x^*) - (m^*/2) | x - x^*|^2 + r \sum_{i=m+1}^q g_i(x), i = 1, \dots, m\}$. (to 101)

*Received March. 10. 1989.

这与(5)矛盾。因此 (u^*, λ^*, y^*) 是(VD1)的有效解。

对游兆永 陈开周教授的热情指导,深表谢意!

参考文献

- [1] Hanson, M. A., J. Math. Anal. Appl. 80(1981), 545-550.
- [2] 刘三阳, 系统科学与数学, 9(1)(1989), 53-0.
- [3] 刘三阳,非光滑非凸多目标规划的最优性和对偶性,西安交通大学博士论文,1988.
- [4] Ben-Tal, A. and Zown, J., JOTA, 47(1985), 483-490.
- [5] Mond, B., and Weir, T., Generalized concavity and duality, in "Generalized concavity in optimization and economics", Schaible, S., and Ziemba, W.T. (eds), Academic press, 1981, 263—279.

The Wolfe Type Duality for Nonsmooth Nonconvex Multiobjective Programming

Liu Sanyang

(Xidian University)

Abstract

In this paper, the wolfe type duality for nonsmooth nonconvex multiobjective programming is discussed using some nonconvex concepts given by author.

(from 102)

References

- [1] Z. Q. Xia, J. Math. Res. & Exposition, No.4 (1987): 681-684.
- [2] V. F. Demyanov and A. M. Rubinov. Quasidifferential Calculus. Optimization Software, Inc. Publications Division, New York (1986).
- [3] R. W. Chaney, Mathematical Programming, 40(1988): 95-109.