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Abstract

By using the theory concerning with quasi-tangency stated by D, Motreanu
and N. H, Pavél, and depeloped by author, we astablish a minimax principle
for locally Lipschitzian functionals on locally convex closed subsets of Banach

spaces,

Introduction _ .

The theory concerning with quasi-tangency stated by D, Motreanu and Parel
(5,61, developed by author ﬁl] extends our research areas from manifolds to subr
sets of manifolds, where a full manifold structure is not necessary: On the other hand
_Ch‘angmhas generalized some well known critical point theorems to locally Lipschi-
tzian functionals on Banach spaces, The purpose of the present paper is to establish
a minimax principle for locally Lipschitzian functionals on locally convex closed sub-
'sets of a Banach space. _

The paper is organized as follows, We will recall briefly the general theory
of relative tangency first, Then we will prove the existence theorem of pseudo-gr-
adient vector field for a locally Lipschitzian functional on a locally convex closed
subset of a Banach space, As natural corollaries of the existence theorem we may

give a existence theorem of the minimization, a strong deformation theorem, a.
mountain- pass theorem and a Lusternik-Schnirelman theorem, in this satution ,‘
Through the paper we denote X to be a Banach space with a norm |. ||, S to
be a nonempty subset of X, and f to be a locally Lipschitzian functional defined
on an open neighborhood U of §.
Definiti(;n 1. A vector p& X is called tangent to the subset S of X at x€ §

if
lim—lh—d(x+hv, S) =0 with hE R, (1)
>0

where d(.,.) is the distance induced by the norm on X, i.e.,
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d(u; A) = inf "u— a".
' ac A

The following proposition proved in [11] is basic for funther development,
Proposition | The follkoing statements are ture,
' (i) the set of tangent vectors to S at x€S is a cone, .
(ii) if the set § is locally convex then the set of tangent vectors to S at x€S$
_ is a vector subspace of X,
@iii) if § is locally convex, and if W is any convex subset of S then the set
of tangent vectors to S at point ).1x+(1—/1;)y is the same as the set of
- tangent vectors to S at point A,x+ (1-4,)y for all i, ,12'(—_ (0,1), where
I={ix+(1-A)y; A€[0,1]}CW . Furthermore, if {ix+(1~-A)y; A€[0, 1]}
CW, and if » is tangent to S at y then p is also tangent to S at any point
Ax+(1-1)y, A€(0,1). | |
It is well known that for any locally Lipschitzian functional f defined on an
open nei-ghborhood U of S in X we may define a generalized derivative of f at any
point x€U, which is denoted by 3f(x). | '
0f(x) is W*_comp act subset ‘of the dual space X* of X. We define ig(x)=

inf {|w
wedfix) -

s}, where [wl, (=sup{<w,2>s lzl=1, » is tangent to S at x}}.

Definition 2 A point x€ S is called a generalized critical point of f}e]ative
to S providedthe equation 4y x) =0,
We may also introduce a compactness condition as follows, »
Definition 3 [ is satisfied Condition( C) of Palais and Smale relative to S. if
for and sequence {x,} in § with bounded { f{x,)} and (A, x,)—>0, then there is a
convergent subsequence of {x,}, .
We use the following usual notations,
A ={xe8; f(x)<cl. K, ={x€S; 0=4(x), f(x) =c},
B(c,e,0) = A.,, - AC_E — Ny«(K_.),
where N(K_) is the o-neighborhood of K_.
It is easy-to see that if f satisfies Condition (C) of Palais and Smale relative
to S, then K, is a compact subset of X,
The following lemma is immediately obtained,
Lemma 1 Suppose that f satisfies Condition ( C) of Palais and Smale felative
to S, then for each 5> there exist », £>D such that
Agx)>n for all x€ B(c,&,d) . ~
Lemma 2 For each X€S there exists a w, €0 f(x) such that [w, I, s= 2% .
Proof It is easy to see that .the map from 9f(x) to R defined by w |—>||wl|5

is a weak*-lower semicontinuous mapping. Indeed, we assume that it is not ture,
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Then there esists a weak®-convergent sequence {w,} in 3f(x) with weak* limit w,
such that

limfw, ., s<llw, |

n-»o0

«, 5. Denote (5:""w0 ""s—,.lig:"w” *, 50

By the definition of the norm "",,s we may pich a point p€X such that p is tang-

ent t0 S at x with |lo] =1 and
J

WO(D)>||WO Il*,s—'?p (2)
For each sufficient large n we have
7]
W,.(IJ)<"W,,"*,S<"WO I*,s—%- (3)

Combining (2) and (3) we obtain an inequality w, (o)< w,(v) —%—. This contradicts

to the. weak*-convergency of {w,}.
Let {w,}Cd3f(x) such that{“w" ||,,s} is a monotonically decreasing sequence of

numbers with limit Ag(x) = inf ||w",,s. Since 0f(x) is a non-empty weak*- compact
wed f(x) ’

convex subset of X*, we may assume that {w,} is weak®-convergent to w, €df(x).
By the lower semi-continuity of W"’“W"*,s, we have
*,s>/15(x).

Ag(x) =1im||w"

T hus i|wo ||,,, s =As(x) .

Now we can prove the following lemma which is concerning with the existence
of a pseudo-gradient vector field.

Lemma 3 Subpose that f satisfies Condition (C ) of Palais and Smale relative
to S, and S is locally convex closed subset of X. Then for each closed subset S, of
SZ{x€S; Ag(x)F0} there exists a locally Lipschitzian vector field ¥ on §, such that
for each x€§,,V(x) is tangent to § at x, || V(x) ||<1 and {w, V(x))}% for each we
- f(x), where p=inf{ig(x); x€S,}-

Proof First of all, we may see that » >0 because of Condition (C) of Palais
and Smale relative to S, For x, €S, there exists a w, €0df(x,) such that "wo ||,,s=
Ag(x,), by Lemma 2. Since 8f(x,) is a weak*-compact convex subset of X*, and
since for any 0 <r<|wq|. s B(0,r)(13 f(x,) =9, where B(0,r) denotes the weak”-
closure of the r-ballin X* with center 0, there exists a he(X;,.)' such that <(h,
wY><(h, x*), for all wedf(xy) and |x*|<r by Hahn-Banach theorem. 0n» the -

other hand, we can find a »¢ X, such that
(hy x*) =<x*,0), for each x*€X* (see p.155(12)).
Then we have (w,y>>§>;x *,v>, for each w€d f(x,) and "x* ||<r, It follows that

2] ‘

inf <W, w>r
wEdf(xo)

Let r:~'72—— anh "0 ":1, By the weak*-upper semicontinuity of 8 f(x), and by using
proposition 1 we can find a convex neighborhood N(x;) of x, such that inf <(w, 2>
wed f(x) :
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_>—'l—, for all xeN(xy)(1S;, and » is tangent to S at x.

- Let {8,(x)}, be a partition of unity of a locally finite refirement of the

open covering {N(x)ﬂS‘,} of §, and let o(x) =3 B,(x)v,. Then V is required.
v ac 4

Lemma 4 Suppose that S is a locally convex closed subset of X, and that
f satisfies Condition (C) of Palais and Smale relative to S. Let ceR, 7,6 and
n>>0 such that ls(x)zrz for all xe¢B(c,s,6). For each ¢€(0,) we define a vec-
tor fieldon S as W,(x)=g(x)+-2(x)-V(x) where ¢ and g are continuous functions
defined on S with range [0,1] and satisfy

1, xeA ., — A _
g(x>={ Folerem Aeme
0’ XQAC+£_AC .

— 1, x&§N,(K,)

g(x) =

' 0, xeN,,(K_) .
and the vector field ¥V, is constructed in B(c,é¢,d) ‘as in Lemma 3. Such a defi-

- &

, respectively

ned W, may be seen as a vector field on whole S.
Let é)(x,t) be the flow of the following Cauchy problam,

;x e(x,t)=-W,(p(x,1t)), @(x,0)=x.

Theén the following statements hold.
(i) the function f along ¢(x,t) is non-increasing on 7,
(i) Je(x, ) -x|<r,
i) f(xX = f(@Cx, D)= (01, for ¢(x,1) €B(c,e,48) and 5e(0,1).
Proof :
t d 4 . t

lotx, ) = x| = || [~ #(x ;)ds||_<_f0||m(¢)(x,s)) Jds<[ds=1r.

Let h(t) = f(@(x,t)). The following calculation
K <max{(w, S-p(x, 93 wedf(olx,)}  a.e.

=~ min{{w, W @ (x,5))); wedf(p(x,s))}
-n/2, @(x,s)¢€B(c,&,40)
S{. 0, otherwise
shows that the function f along ¢(x, t) is non-increasing and

GO = foGx, )= = [H(s)ds>Tt, if @(x,0) €Ble,e,48), seC0,1).

The following theorem is the key step in developing the minimax principle.

Theorem | (Deformation Lemma) Suppose.that S is a locally convex clo-
sed subset. of X, and that f satisfies Condition (C) of Palais and Smale rala-
tive to S. If ¢ is a real number and N is any neighborhood of K, then for any
&>0 there ‘glxists ¢€(0,&,) and a homomorphism. ¥.S—S such that

(i) ¥(x)=x for xQAc”o—AC_ao,
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(ii ) ¢(A.,,/NVCA,._,,

(iii) if K =g, then (A, )CA,_,. .

Proof We choose 6>>0 sush that N,,(K.,)CN. Let n and & be the numbers
determined in Lemma 1, Without loss of generality we may assume that e .
min(¢,, n6/4) and take &¢(0,¢) .For the flow ¢@(x,t) generated by W, in Lemma
4 we have ' .

A and all ¢,

cté& c— &

o(x,t) =x for all x&A

We now observe those trajectories ¢(x,r)'emanating from x in A INNgs(K.) Let
ty= (%7—)?. If xeAs_,, it is obvious that @(x,ty) = xed__,, so we inay restrict x
only on the subset B(c,£,64) . & , -

We expect to prove @(x,ty) €A, _,. If not, then ¢(x,s) €A, — 4., for all se
(0,7,) . The inequalities |@(x, s) ~ xllésg—%’—('f(x) - flo(x, s))<—§7—~2?<6‘ imply
that if x &N,,(K,) then @(x,s) &Nus(K,) for each se[0,7,). Then g(x, s) €B(c,
£,46) for -all se(0,¢,). By Lemma 4 again we have f(x)'»'y—‘fl(w(x, to))z(—g—)-to
=2¢>2¢. It contracts to the fact that xeAd_. -~ A4._,— Ng(K,) and cp(x,toi) €A
A,_;~ N(K_ ). Taking ¥(x)=¢(x,t,) we find ¢ satisfies all requirements in the

c+eé

theorem.

Remark The proof of the above theorem is along the_ line of the proof given‘
by Chang [41]. ‘

The minimax principle, which is a series of existence theorems of critical
points based on, is derived by the deformation lemma. A lot of theorems, such’
as minimization theorem, Lusternik-Schnirelman category theory and mountain-
‘pass type -theorems hold ture for locally Lipschitzian functionals on locally con-
vex closed subsets of Banach spaces. We only list some of them and o:rmit- the
detail proofs. V S o

Theorem 2 (minimization) Suppose that S'is a;;locaily co/nvex closed ,_subset;
of X, and that f satisfies Condition (C) of Palais and Smale relative to S andis
bounded from below on S. Then fls attains its greatest lower bound.

Theorem 3 (Lusternik-Schnirelman) = Suppose'thatv f satisfies Condition (C)
of Palais and Smale relative to S, where S is a,ldcally convex closed subset of
X, If —oolce=cpy = cm¢2=--f=b,4k<0°, then f has at lcast k distinct critical
points relative to S in the lével f '(¢c), where ¢,= inf sup f(x), #;={ACS,

€F, xed
cat( A4, X) =i}, cat( AJ, X) denotes the Lusternik\—Schnirélman category of A4 in X.
Corollary  Under the assumptions of Theorem 3, f has at least cat(S, X)
distinct critical points relative to S. ’ , ]
Theorem 4 (Rabinowitz)  Let S be a ld(;ally convex closed subset of X,
which contains the origin of X. Suppose that f satisfies Condition (C) of Palais
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and Smale relative to S. If there exists a decomposition of X=X,HX, with a fi-
nite-dimensional X, and if there exist constants b, and b, with 5,<b, and a nei-
. ghborhood N of X,, such that lezmszbz, flonnis=by; then f has a critical point

relative to S. :
All of results in [1],[2] and (7] can be extended in the same way.

References

[1] H. Amann, Math. Z, 196 (1979), 127—166.

(2] A. Ambrosetti and P. H. Rabinowitz, J. Functional Analysis,14(19735, 349-«381.

[3] V. Benci and P. H. Rabinowitz, Invent. Math.,52(1979 ), 241—273.

[4] K.C. Chang, J. Math. Anal. Appl.,80(1981) 102—129.

f5] D, Motreanu and N. H. Pavel, J, Math. Anal. Appl. 83(1982) 116—132,

[6] I. Motreanu, J. Math. Ana] . Appl.,117 (1986), 128—137.

[7] W. M. Ni, J. Analyse Math., 37(1980), 248—275.

8] R. S. Palais, Topology, 2 (1963),299—340.

[9] ‘R. S. Palais, Topology, 5 (19.66),1115—132.

[10] P. H. Rabinowitz, CBMS Regior;al Conf. Ser. in Math,,No. 65, Amer. Math, Soc.. Provi-
dence, R. 1., 19'86.

[11] T. Wang, A minimax principle on closed subsets of Banach manifolds and its applications,

to appear.
+ {127 J.L . Kelley and 1. Namioka, Linear Topological Spaces, Van Norstrand (1963) .

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



