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Abstract

We define the partial models as the models of 3-valued logic. The Kleene
. semantics for the first-order language is given. Some algebraic relations between
p-models, such as isomorphism, homomorphism and extension, are discussed. Us-
ing the method of diagram, we give another description of these relations. The

fixed point theorem is proved for certain operators on p-models.

We shall study somelalgebraic relations between the partial models which
are defined as the models of three-valued logic. About the syntax of the first-
order language and some notations in model theory, reades can refer to [ 1 Jand
£3]. ‘

~ We first define the partial model. Let L be a language, we write L=
{C};U{R;},,, where C/s are constants and R/s are predicates .

Definition | A partial model (p-model) for L is a structure U= (A, '{C?}iel,
{R?}j‘ > such that

1) A#@ and A is denoted by |%

2) For all iel, Cled,

3) For all jeJ, R‘f is a partial function from A" to (0,1} if R, is K-ary.

Some rolations between p-models define as follows:

Definition 2 Let A, B be two p-models for L, we write A=( A4, {C;‘"}M,
(RY),.,5, o= <B, (C,,, (R}, > | '

2.1) We say that % is a substructure of B(ASB) iff (1) A B (2) for
all iel, C'=C2(3) for all jeJ, if R, is K-ary, then for all ac4*, R}@ =
R¥a). |

2.2) We say that %is homomorphic to B(UA=9B) iff there is a function f
mapping A onto B such that (1) for all i€l, f(CH=CP (2) for all jeJ, if R,
is K-ary, then R}(@ = R}(f(@) for all @ed". |

2.3) We say ihat A is isomophic to B(A=xBY) iff there is a function s such
that f is 1 -1 and f is a homomorphic mapping from 4 onto B.

* Received Mar. 2, 1989.
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2.4) We say that Bis a extension of A(ALB) iff (1) |A/=|\,(2) for
all iel, C'=C},(3) for all jeJ, if R, is K-ary, then for all ze 4", R*(a) =1
>RX@ =1 and RN@) =0 =RX@ = 0.

Defination 3 Suppose that LCL’, A is a p-model for L and a’is a D
model for L. We say that %  is an expansion of ¥ iff |9%|=|%’| and for all se
L, st= sm/ .

Using the Kleene semantics, we have the following,

Definition 4 Let ¢ be an expression of L, 9% be a p-model of L and zeyl?ll,
where V'={x,,x;,++ which is the set of all variables of L, we define the value
qzm(z) by induction on the length of ¢,

(1) eg=xeV, (pm<z>:z(x)
(2) o=C,, 9" (zy=C"
(3) p=t,=1,, wQ‘(z):.{ L=
‘ 0 nXz2)F Kz
[ 1 if Rj(t‘<z),--.,tf(z>) =1

0 if RYCCz), v, 12Kz =0
L, o w.

(5) =719, pzy=1 if p"(2>=0, @™(z)>=0,if $™(z)=1 and ¢™(z)=u if

(4) tpERj(z‘,---,tk),q)Q%z):

: 1 if gy =¢<z>=1
(6) o=p ¢, . (p”‘<z>:{ 0 if #;<z>=0 or #;{z>=0
u O« W, ‘
_ 1 if for some ac¢A, 1/)9]<z(g)>:1
(7) e=ax¢y, . wQ‘(z):{ 0 if for all aed, $"(z(})>=0
U O Wo

In this definition, we adopt Kleene’s strong three-valued connectives. (See '
[2D. ,
Théorem 5 If u=%, then w‘u: q;(Bfor any sentence @.

Proof Let g be an isomophism from Y to B, we prove by induction on
formulas that for all z¢”|u| and all formulas ¢, ¢*(z)=@>(goz). We consider
‘only the case ¢ has the form 3Jxy. Let ¢ be Ixy¥, q)w(z>:1 iff for some ael?ll,
¢“<z(")>—1 iff for some ae€|9U|, l/)8<goz(x)>:1 (by I.H.) iff for some ael|%|,
¥ ((goz) ( 2(a ))) 1 iff 9% goz)=1. In the same way, ¢ <z)=0 iff g% goz)>=0,
whence qﬂ‘(z) u iff ¢ (goz) u, hence ¢ (z) 1/ <g°z> When ¢ is a sentence,
we have ¢p ::p »

Theorem § If % <B, then ¢°(z)=129%z)=1 and ¢"(z)=0=29Xz>=0.

Proof By induction on ¢, we prove <p"“<z>= ((1) )1>¢%(z)= (6 ) .

CCase 1;9=ti=1,, 9X2)=12<2>= 2)2t;]X2) = 1;z)=>9*(z)=1. In the
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same way, pz)=0=29pXz)=0.

Case 2 @=R;(1)y+, 1), @K2)= 1R} (<2, o, 10420 = 1 DR 12, +or,
LN = IORI(X2), e, X2 = 199X 2)= 1. In the same way, ¢™(z)=0-9%z)
=0, '

Case 3 9="1¢, 9™(2)=12§™(2)= 059X z>= 0>9*(z)=1. In the same way,
9" (zy=0=9™(z)=0.

Case 4 o=ph\¢,, 9<z)=129¥Xz>=1 (i=1,2)=9Xz)>=1 (by 1.H,)-»¢Xz)
=L :

Case 5 ¢=3xy, :pw(z>:1:>for some q¢A, llzw(z(g)):l:) for some ac¢A,
d)%<z(2)>¥1:$¢%(z>=l (since A= B). In the same way, tp‘u<z)=0ﬁ:p°‘<z>=0.

Definition .7 Let A be a p-model for L, L,= LUJ{C,: ac A}, we expand % to
W= (A, CM) aed where A=|y| and CM=a, so A, =(A, d) acA. We define the
positive diagram of 9% (PA), the negative diagram of Y (NU) and the diagram
of A(AY) as the followihg, Py ={0o; 0 is an atomic sentence of L, and 0”‘21}. ,
NUA={4q0;0 is an atomic sentence of L, and o¥=0}. AU =PY UNY .

Theorem 8 Let 9%, B be p-models for L, % is homomorphic to a subsmo-
del of B iff some expansion of B is a model of PY.

Proof “=”, Suppose that ‘z(::g ‘B’Q;‘B, we expand B to 93+:(‘B, C;B*)aeA, :
B is a p-model for L, and+Cf:g(a) (a€eAd), so Q3+:(‘B,g(a)).a€A. since g is
a homomorphism, oM=1>0%=1 for any atomic senténce o, hence 8" is a mo-
del of PY.

“&”, Suppose that some expansion of B, say <B+,. is a model of P9, then
for all acd, C;geB, so we define a mapping g from A to B. g(a) =C,?+ Jt s
easy to verify that g is a homomorphic mapping. Since R?(al yreesdy) = léR;l‘ .
(C e, CUY = 1(R(C, e, Co M= LORAC, w00, Cy ) €PUD(RLC, ey C )P
=1:>R?(g(a,),---,g(ak))= 1, g is homomorphic.

Theorem 9 9 is isomorphic to a submodel of B iff some expansion of @B is
a model of AY. ‘

The proof of this theorem is similar to that of th. 8.

Theorem |0 A< DB iff B, is a model of AU Where B,=(B,a)acAd.

Proof =7 Assume Y <9, then Y,<B,. By Thm 6, we have o= (é):>
o B= (é) hence ®,is a model of AU,
@&, Assume P, is a model of A%, viel, If C'=a, then (C,=C%1,
whence (C;=C,) €A% hence (C;= C,,)%'Zl i.e., C,-% =a. We have C/=C% 1In
addition, if R}(a,+=,a)=1, then R(C, ,,C,) €AU, s0 (R(C, ,,C, N M =1
whence R;B(al ,**sa,) =1, In the same way, we have if .R?(a, yeee,a,)=0, then
Ry ,+,a,)=0. Whence R?(E) = R;B(E) hence A< B.
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In artificial intelligence, we need to discuss operators on p-models. Now,
we study certain operators over #, where s‘={‘2!‘l‘2(|:

Definition || Let {w}nwbe a<-chain of '#, i.e., U,<A, <--- We saythat
A is the supremum of {u,}  iff A,<UA for all ne¢o and for any Bedif A<
B for all n, then Y <B. Y is denoted by sup {U,}.

Proposition 12 If {¥,},., is a< -chain of #, then {‘Zln}nw has a supremum.

Proof Let U= (A, {CP), jed, {R)}jed> We define A=A, {Cl, (R}

“as follows: Ci'=C} for all zeI let R; be K-ary. For ged”,

0 for some ne¢ow, R?"(c?/)=
t for all new, R@)1 .
It is easy to verify ¥ =sup{%,}

1 for some neow, Rj"'(éi,‘)=1
R;(a) {

Definition |3 Let G be an operator over #. G is said to be momotonic iff
A<BOG(A)=G(B). G is said to be continuous iff for any <- chain{ u,}, ,
G(sup{U,}) =sup{G(A,)}.

Theorem |4 Let G be a continuous operator over #, then G has a least
fixpoint. , h

Proof Let A=<A, {a},,, {R‘}}jd> where q,€ A for all iel and R;‘ is a now-
here defined function. Let Ao=A, A,.,=G(A,). We show U,<G(Y,) by induction
on w.Because A<G(A>U, < G(Ay) and A, <G(A) DG, ) < (A DUy <G(A, )
hence %,<G(Y,) for all new, o {%A,},, is a<-chain. By Pro. 12, {¥,} has a
supremum 9 . Because G is continuous, G(A) = G(sup{U,})=sup{G(A,)} =sup{ A, ., }
=, hence U is a fixed point of G. In addition, if G(8)= 8, then we have

%A,<B for all new (easy to prove it by induction on o ), so sup{%U,}<B i.e.
A< B,hence Y is the least fixpoint of G.
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