Some Algebraic Relations Between p-models*

Song Fangmin

(Dept. Math., Nanjing University)

Abstract

We define the partial models as the models of 3-valued logic. The Kleene semantics for the first-order language is given. Some algebraic relations between p-models, such as isomorphism, homomorphism and extension, are discussed. Using the method of diagram, we give another description of these relations. The fixed point theorem is proved for certain operators on p-models.

We shall study some algebraic relations between the partial models which are defined as the models of three-valued logic. About the syntax of the first-order language and some notations in model theory, reades can refer to [1] and [3].

We first define the partial model. Let L be a language, we write $L = \{C_i\}_{i \in I} \cup \{R_j\}_{i \in I}$, where C_i 's are constants and R_j 's are predicates.

Definition | A partial model (p-model) for L is a structure $\mathfrak{A} = \langle A, \{C_i^{\mathfrak{A}}\}_{i\in I}, \{R_j^{\mathfrak{A}}\}_{j\in J}\rangle$ such that

- 1) $A \neq \emptyset$ and A is denoted by $|\mathfrak{A}|$.
- 2) For all $i \in I$, $C_i^{\mathfrak{A}} \in A$.
- 3) For all $j \in J$, $R_j^{\mathfrak{A}}$ is a partial function from A^k to $\{0,1\}$ if R_j is K-ary. Some rolations between p-models define as follows:

Definition 2 Let \mathfrak{A} , \mathfrak{B} be two p-models for L, we write $\mathfrak{A} = \langle A, \{C_i^{\mathfrak{A}}\}_{i \in I}, \{R_j^{\mathfrak{B}}\}_{i \in I} \rangle$, $\mathfrak{A} = \langle B, \{C_i^{\mathfrak{B}}\}_{i \in I}, \{R_j^{\mathfrak{B}}\}_{i \in I} \rangle$.

- 2.1) We say that $\mathfrak A$ is a substructure of $\mathfrak B(\mathfrak A \subseteq \mathfrak B)$ iff (1) $A \subseteq B$, (2) for all $i \in I$, $C_i^{\mathfrak A} = C_i^{\mathfrak B}$, (3) for all $j \in J$, if R_j is K-ary, then for all $\overline{a} \in A^k$, $R_j^{\mathfrak A}(\overline{a}) = R_j^{\mathfrak B}(a)$.
- 2.2) We say that \mathfrak{A} is homomorphic to $\mathfrak{B}(\mathfrak{A} \simeq \mathfrak{B})$ iff there is a function f mapping A onto B such that (1) for all $i \in I$, $f(C_i^{\mathfrak{A}}) = C_i^{\mathfrak{B}}$, (2) for all $j \in J$, if R_j is K-ary, then $R_j^{\mathfrak{A}}(\overline{a}) = R_j^{\mathfrak{B}}(f(\overline{a}))$ for all $\overline{a} \in A^k$.
- 2.3) We say that \mathfrak{A} is isomorphic to $\mathfrak{B}(\mathfrak{A} \cong \mathfrak{B})$ iff there is a function f such that f is 1-1 and f is a homomorphic mapping from A onto B.

^{*} Received Mar. 2, 1989.

2.4) We say that \mathfrak{B} is a extension of $\mathfrak{A}(\mathfrak{A} \leq \mathfrak{B})$ iff (1) $|\mathfrak{A}| = |\mathfrak{B}| \cdot (2)$ for all $i \in I$, $C_i^{\mathfrak{A}} = C_i^{\mathfrak{B}}$, (3) for all $j \in J$, if R_j is K-ary, then for all $\overline{a} \in A^k$, $R_j^{\mathfrak{A}}(\overline{a}) = 1$ $\Rightarrow R_i^{\mathfrak{B}}(\overline{a}) = 1$ and $R_i^{\mathfrak{A}}(\overline{a}) = 0 \Rightarrow R_i^{\mathfrak{B}}(\overline{a}) = 0$.

Defination 3 Suppose that $L \subset L'$, $\mathfrak A$ is a p-model for L and $\mathfrak A'$ is a pmodel for L'. We say that \mathfrak{A}' is an expansion of \mathfrak{A} iff $|\mathfrak{A}| = |\mathfrak{A}'|$ and for all $s \in \mathfrak{A}$ $L \cdot s^{\mathfrak{A}} = s^{\mathfrak{A}'} \cdot$

Using the Kleene semantics, we have the following:

Definition 4 Let φ be an expression of L, \mathfrak{A} be a p-model of L and $z \in V |\mathfrak{A}|$. where $V = \{x_0, x_1, \dots\}$ which is the set of all variables of L, we define the value $\varphi^{\mathfrak{A}}\langle z\rangle$ by induction on the length of φ .

(1)
$$\varphi \equiv x \in V$$
, $\varphi^{\mathfrak{A}}(z) = z(x)$

$$(2) \quad \varphi \equiv C_i , \qquad \varphi^{\mathfrak{A}}\langle z \rangle = C_i^{\mathfrak{A}}$$

$$(3) \quad \varphi \equiv t_1 = t_2, \qquad \varphi^{\mathfrak{A}}\langle z \rangle = \begin{cases} 1 & t_1^{\mathfrak{A}}\langle z \rangle = t_2^{\mathfrak{A}}\langle z \rangle \\ 0 & t_1^{\mathfrak{A}}\langle z \rangle \neq t_2^{\mathfrak{A}}\langle z \rangle \end{cases}$$

$$(3) \quad \varphi \equiv t_1 = t_2, \qquad \varphi^{\mathfrak{A}}\langle z \rangle = \begin{cases} 1 & t_1^{\mathfrak{A}}\langle z \rangle = t_2^{\mathfrak{A}}\langle z \rangle \\ 0 & t_1^{\mathfrak{A}}\langle z \rangle \neq t_2^{\mathfrak{A}}\langle z \rangle \end{cases}$$

$$(3) \quad \varphi \equiv t_1 = t_2, \qquad \varphi^{\mathfrak{A}}\langle z \rangle = \begin{cases} 1 & t_1^{\mathfrak{A}}\langle z \rangle = t_2^{\mathfrak{A}}\langle z \rangle \\ 0 & t_1^{\mathfrak{A}}\langle z \rangle \neq t_2^{\mathfrak{A}}\langle z \rangle \end{cases}$$

$$(4) \quad \varphi \equiv R_{j}(t_{1}, \dots, t_{k}), \varphi^{\mathfrak{A}}(z) = \begin{cases} 1 & \text{if } R_{j}^{\mathfrak{A}}(t_{1}^{\mathfrak{A}}(z), \dots, t_{k}^{\mathfrak{A}}(z)) = 1\\ 0 & \text{if } R_{j}^{\mathfrak{A}}(t_{1}^{\mathfrak{A}}(z), \dots, t_{k}^{\mathfrak{A}}(z)) = 0\\ u & \text{o. w.} \end{cases}$$

(5) $\varphi \equiv \exists \psi$, $\varphi^{\mathfrak{A}}(z) = 1$ if $\psi^{\mathfrak{A}}(z) = 0$, $\varphi^{\mathfrak{A}}(z) = 0$, if $\psi^{\mathfrak{A}}(z) = 1$ and $\varphi^{\mathfrak{A}}(z) = u$ if

(6)
$$\varphi \equiv \psi_1 \wedge \psi_2$$
,
$$\varphi^{\mathfrak{A}} \langle z \rangle = \begin{cases} 1 & \text{if } \psi_1^{\mathfrak{A}} \langle z \rangle = \psi_2^{\mathfrak{A}} \langle z \rangle = 1 \\ 0 & \text{if } \psi_1^{\mathfrak{A}} \langle z \rangle = 0 \text{ or } \psi_2^{\mathfrak{A}} \langle z \rangle = 0 \\ u & \text{o.w.} \end{cases}$$

(7)
$$\varphi = \exists x \psi$$
,
$$\varphi^{\mathfrak{A}} \langle z \rangle = \begin{cases} 1 & \text{if for some } a \in A, \ \psi^{\mathfrak{A}} \langle z(\frac{x}{a}) \rangle = 1 \\ 0 & \text{if for all } a \in A, \ \psi^{\mathfrak{A}} \langle z(\frac{x}{a}) \rangle = 0 \\ u & \text{o. w.} \end{cases}$$

In this definition, we adopt Kleene's strong three-valued connectives. (See [2].

Theorem 5 If $\mathfrak{A} \cong \mathfrak{B}$, then $\varphi^{\mathfrak{A}} = \varphi^{\mathfrak{B}}$ for any sentence φ .

Proof Let g be an isomorphism from \mathfrak{A} to \mathfrak{B} , we prove by induction on formulas that for all $z \in \mathcal{V} |\mathfrak{A}|$ and all formulas φ , $\varphi^{\mathfrak{A}}(z) = \varphi^{\mathfrak{B}}(g \circ z)$. We consider only the case φ has the form $\exists x \psi$. Let φ be $\exists x \psi$, $\varphi^{\mathfrak{A}}(z) = 1$ iff for some $a \in |\mathfrak{A}|$, $\psi^{\mathfrak{A}}\langle z(_{a}^{X})\rangle = 1 \text{ iff for some } a \in |\mathfrak{A}|, \ \psi^{\mathfrak{B}}\langle g \circ z(_{a}^{X})\rangle = 1 \text{ (by I.H.) iff for some } a \in |\mathfrak{A}|,$ $\psi^{\mathfrak{B}}\langle (g \circ z) (\frac{x}{g(a)}) \rangle = 1$ iff $\varphi^{\mathfrak{B}}\langle g \circ z \rangle = 1$. In the same way, $\varphi^{\mathfrak{A}}\langle z \rangle = 0$ iff $\varphi^{\mathfrak{B}}\langle g \circ z \rangle = 0$, whence $\varphi^{\mathfrak{A}}(z) = u$ iff $\varphi^{\mathfrak{B}}(g \circ z) = u$, hence $\varphi^{\mathfrak{A}}(z) = \varphi^{\mathfrak{B}}(g \circ z)$. When φ is a sentence, we have $\varphi^{\mathfrak{A}} = \varphi^{\mathfrak{B}}$.

Theorem 6 If $\mathfrak{A} \leq \mathfrak{B}$, then $\varphi^{\mathfrak{A}}\langle z \rangle = 1 \Rightarrow \varphi^{\mathfrak{B}}\langle z \rangle = 1$ and $\varphi^{\mathfrak{A}}\langle z \rangle = 0 \Rightarrow \varphi^{\mathfrak{B}}\langle z \rangle = 0$. **Proof** By induction on φ , we prove $\varphi^{\mathfrak{A}}\langle z \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow \varphi^{\mathfrak{B}}\langle z \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Case $1: \varphi \equiv t_1 = t_2$, $\varphi^{\mathfrak{A}}\langle z \rangle = 1 \Rightarrow t_1^{\mathfrak{A}}\langle z \rangle = t_2^{\mathfrak{A}}\langle z \rangle \Rightarrow t_1^{\mathfrak{B}}\langle z \rangle = t_2^{\mathfrak{B}}\langle z \rangle \Rightarrow \varphi^{\mathfrak{B}}\langle z \rangle = 1$. In the same way, $\varphi^{\mathfrak{A}}\langle z\rangle = 0 \Rightarrow \varphi^{\mathfrak{B}}\langle z\rangle = 0$.

Case 2 $\varphi \equiv R_j(t_1, \dots, t_k)$, $\varphi^{\mathfrak{A}}(z) = 1 \Rightarrow R_j^{\mathfrak{A}}(t_1^{\mathfrak{A}}(z), \dots, t_k^{\mathfrak{A}}(z)) = 1 \Rightarrow R_j^{\mathfrak{B}}(t_1^{\mathfrak{A}}(z), \dots, t_k^{\mathfrak{A}}(z)) = 1 \Rightarrow R_j^{\mathfrak{B}}(t_1^{\mathfrak{A}}(z), \dots, t_k^{\mathfrak{A}}(z)) = 1 \Rightarrow R_j^{\mathfrak{B}}(t_1^{\mathfrak{A}}(z), \dots, t_k^{\mathfrak{A}}(z)) = 1 \Rightarrow \varphi^{\mathfrak{B}}(z) = 1$. In the same way, $\varphi^{\mathfrak{A}}(z) = 0 \Rightarrow \varphi^{\mathfrak{B}}(z) = 0$.

Case 3 $\varphi \equiv \neg \psi$, $\varphi^{\mathfrak{A}}\langle z \rangle = 1 \Rightarrow \psi^{\mathfrak{A}}\langle z \rangle = 0 \Rightarrow \psi^{\mathfrak{B}}\langle z \rangle = 0 \Rightarrow \varphi^{\mathfrak{B}}\langle z \rangle = 1$. In the same way, $\varphi^{\mathfrak{A}}\langle z \rangle = 0 \Rightarrow \varphi^{\mathfrak{B}}\langle z \rangle = 0$.

Case 4 $\varphi \equiv \psi_1 \wedge \psi_2$, $\varphi^{\mathfrak{A}}\langle z \rangle = 1 \Rightarrow \psi_i^{\mathfrak{A}}\langle z \rangle = 1$ $(i = 1, 2) \Rightarrow \psi_i^{\mathfrak{B}}\langle z \rangle = 1$ (by I. H.) $\Rightarrow \varphi^{\mathfrak{B}}\langle z \rangle = 1$.

Case 5 $\varphi = \exists x \psi$, $\varphi^{\mathfrak{A}}(z) = 1 \Rightarrow \text{for some } a \in A$, $\psi^{\mathfrak{A}}(z \binom{x}{a}) = 1 \Rightarrow \text{for some } a \in A$, $\psi^{\mathfrak{A}}(z \binom{x}{a}) = 1 \Rightarrow \varphi^{\mathfrak{A}}(z) = 1 \Rightarrow \varphi^{\mathfrak{A}(z) = 1 \Rightarrow \varphi^{\mathfrak{A}}(z) = 1 \Rightarrow \varphi^{$

Definition 7 Let $\mathfrak A$ be a p-model for L, $L_A = L \cup \{C_a : a \in A\}$, we expand $\mathfrak A$ to $\mathfrak A_A = (\mathfrak A, C_a^{\mathfrak A_A})$ $a \in A$ where $A = |\mathfrak A|$ and $C_a^{\mathfrak A_A} = a$, so $\mathfrak A_A = (\mathfrak A, a)$ $a \in A$. We define the positive diagram of $\mathfrak A(P\mathfrak A)$, the negative diagram of $\mathfrak A(N\mathfrak A)$ and the diagram of $\mathfrak A(\Delta\mathfrak A)$ as the following: $P\mathfrak A = \{\sigma: \sigma \text{ is an atomic sentence of } L_A \text{ and } \sigma^{\mathfrak A_A} = 1\}$. $N\mathfrak A = \{\neg \sigma: \sigma \text{ is an atomic sentence of } L_A \text{ and } \sigma^{\mathfrak A_A} = 0\}$. $\Delta \mathfrak A = P\mathfrak A \cup N\mathfrak A$.

Theorem 8 Let \mathfrak{A} , \mathfrak{B} be p-models for L, \mathfrak{A} is homomorphic to a subsmodel of \mathfrak{B} iff some expansion of \mathfrak{B} is a model of $P\mathfrak{A}$.

Proof " \Rightarrow ", Suppose that $\mathfrak{A} \simeq g \, \mathfrak{B}' \subseteq \mathfrak{B}$, we expand \mathfrak{B} to $\mathfrak{B}^+ = (\mathfrak{B}, C_a^{\mathfrak{B}}) a \in A$, \mathfrak{B}^+ is a p-model for L_A and $C_a^{\mathfrak{B}^+} = g(a) \, (a \in A)$, so $\mathfrak{B}^+ = (\mathfrak{B}, g(a)) \, a \in A$. since g is a homomorphism, $\sigma^{\mathfrak{A}_A} = 1 \Rightarrow \sigma^{\mathfrak{B}^+} = 1$ for any atomic sentence σ , hence \mathfrak{B}^+ is a model of $P\mathfrak{A}$.

"\(\infty\)". Suppose that some expansion of \mathfrak{B} , say \mathfrak{B}^+ , is a model of $P\mathfrak{A}$, then for all $a \in A$, $C_a^{\mathfrak{B}^+} \in B$, so we define a mapping g from A to B: $g(a) = C_a^{\mathfrak{B}^+}$. It is easy to verify that g is a homomorphic mapping. Since $R_j^{\mathfrak{A}}(a_1, \dots, a_k) = 1 \Rightarrow R_j^{\mathfrak{A}_A}$. $(C_{a_1}^{\mathfrak{A}_A}, \dots, C_{a_k}^{\mathfrak{A}_A}) = 1 \Rightarrow (R_j(C_{a_1}, \dots, C_{a_k}))^{\mathfrak{A}_A} = 1 \Rightarrow R_j(C_{a_1}, \dots, C_{a_k}) \in P\mathfrak{A} \Rightarrow (R_j(C_{a_1}, \dots, C_{a_k}))^{\mathfrak{B}^+} = 1 \Rightarrow R_j^{\mathfrak{B}}(g(a_1), \dots, g(a_k)) = 1$, g is homomorphic.

Theorem 9 $\mathfrak A$ is isomorphic to a submodel of $\mathfrak B$ iff some expansion of $\mathfrak B$ is a model of $\Delta \mathfrak A$.

The proof of this theorem is similar to that of th. 8.

Theorem 10 $\mathfrak{A} \leq \mathfrak{B}$ iff \mathfrak{B}_A is a model of $\Delta \mathfrak{A}$ where $\mathfrak{B}_A = (\mathfrak{B}, a)a \in A$.

Proof " \Rightarrow ". Assume $\mathfrak{A} \leq \mathfrak{B}$, then $\mathfrak{A}_A \leq \mathfrak{B}_A$. By Thm 6, we have $\sigma^{\mathfrak{A}_A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow \sigma^{\mathfrak{B}_A} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ hence \mathfrak{B}_A is a model of $\Delta \mathfrak{A}$.

"". Assume \mathfrak{B}_A is a model of $\Delta\mathfrak{A}$, $\forall i \in I$, If $C_i^{\mathfrak{A}} = a$, then $(C_i = C_a)^{\mathfrak{A}} = 1$, whence $(C_i = C_a) \in \Delta\mathfrak{A}$ hence $(C_i = C_a)^{\mathfrak{B}} = 1$ i.e., $C_i^{\mathfrak{B}} = a$. We have $C_i^{\mathfrak{A}} = C_i^{\mathfrak{B}}$. In addition, if $R_j^{\mathfrak{A}}(a_1, \dots, a_k) = 1$, then $R_j(C_{a_1}, \dots, C_{a_k}) \in \Delta\mathfrak{A}$, so $(R_j(C_{a_1}, \dots, C_{a_k}))^{\mathfrak{B}_A} = 1$ whence $R_j^{\mathfrak{B}}(a_1, \dots, a_k) = 1$. In the same way, we have if $R_j^{\mathfrak{A}}(a_1, \dots, a_k) = 0$, then $R_i^{\mathfrak{B}}(a_1, \dots, a_k) = 0$. Whence $R_j^{\mathfrak{A}}(\overline{a}) = R_j^{\mathfrak{B}}(\overline{a})$ hence $\mathfrak{A} \subseteq \mathfrak{B}$.

In artificial intelligence, we need to discuss operators on p-models. Now, we study certain operators over \mathcal{A} , where $\mathcal{A} = \{ \mathfrak{A} : |\mathfrak{A}| = A \}$.

Definition || Let $\{\mathfrak{A}\}_{n\in\omega}$ be $a\leq -$ chain of \mathscr{A} , i.e., $\mathfrak{A}_0\leq \mathfrak{A}_1\leq \cdots$. We say that \mathfrak{A} is the supremum of $\{\mathfrak{A}_n\}_{n\in\omega}$ iff $\mathfrak{A}_n\leq \mathfrak{A}$ for all $n\in\omega$ and for any $\mathfrak{B}\in\mathscr{A}$ if $\mathfrak{A}_n\leq \mathfrak{B}$ for all n, then $\mathfrak{A}\leq \mathfrak{B}$. \mathfrak{A} is denoted by $\sup\{\mathfrak{A}_n\}$.

Proposition 12 If $\{\mathfrak{A}_n\}_{n\in\omega}$ is $a\leq -$ chain of \mathscr{A} , then $\{\mathfrak{A}_n\}_{n\in\omega}$ has a supremum. **Proof** Let $\mathfrak{A}_n = \langle A, \{C_i^{\mathfrak{A}_n}\}, i\in I, \{R_j^{\mathfrak{A}_n}\}, j\in J\rangle$ We define $\mathfrak{A} = \langle A, \{C_i^{\mathfrak{A}_n}\}, \{R_j^{\mathfrak{A}_n}\}, \{R_j^{\mathfrak{$

$$R_{j}^{\mathfrak{A}}(a) = \begin{cases} 1 & \text{for some } n \in \omega, \ R_{j}^{\mathfrak{A}_{n}}(\overline{a}_{i}) = 1 \\ 0 & \text{for some } n \in \omega, \ R_{j}^{\mathfrak{A}_{n}}(\overline{a}_{i}) = 0 \\ \uparrow & \text{for all } n \in \omega, \ R_{j}^{\mathfrak{A}_{n}}(\overline{a}_{i}) \uparrow \end{cases}.$$

It is easy to verify $\mathfrak{A} = \sup \{ \mathfrak{A}_n \}$.

Definition 13 Let G be an operator over \mathscr{A} . G is said to be momotonic iff $\mathfrak{A} \leq \mathfrak{B} \Rightarrow G(\mathfrak{A}) \Rightarrow G(\mathfrak{B})$. G is said to be continuous iff for any $\leq - \operatorname{chain}\{\mathfrak{A}_n\}_{n \in \omega}$, $G(\sup\{\mathfrak{A}_n\}) = \sup\{G(\mathfrak{A}_n)\}$.

Theorem 14 Let G be a continuous operator over \mathcal{A} , then G has a least fixpoint.

Proof Let $\Lambda = \langle A, \{a_i\}_{i \in I}, \{R_j^{\Lambda}\}_{j \in J} \rangle$ where $a_i \in A$ for all $i \in I$ and R_j^{Λ} is a nowhere defined function. Let $\mathfrak{A}_0 = \Lambda$, $\mathfrak{A}_{n+1} = G(\mathfrak{A}_n)$. We show $\mathfrak{A}_n \leq G(\mathfrak{A}_n)$ by induction on ω . Because $\Lambda \leq G(\Lambda) \Rightarrow \mathfrak{A}_0 \leq G(\mathfrak{A}_0)$ and $\mathfrak{A}_n \leq G(\mathfrak{A}_n) \Rightarrow G(\mathfrak{A}_n) \leq G^2(\mathfrak{A}_n) \Rightarrow \mathfrak{A}_{n+1} \leq G(\mathfrak{A}_{n+1})$ hence $\mathfrak{A}_n \leq G(\mathfrak{A}_n)$ for all $n \in \omega$, so $\{\mathfrak{A}_n\}_{n \in \omega}$ is $a \leq -$ chain. By Pro. 12, $\{\mathfrak{A}_n\}$ has a supremum \mathfrak{A} . Because G is continuous, $G(\mathfrak{A}) = G(\sup\{\mathfrak{A}_n\}) = \sup\{G(\mathfrak{A}_n)\} = \sup\{\mathfrak{A}_{n+1}\}$ = \mathfrak{A} , hence \mathfrak{A} is a fixed point of G. In addition, if $G(\mathfrak{B}) = \mathfrak{B}$, then we have $\mathfrak{A}_n \leq \mathfrak{B}$ for all $n \in \omega$ (easy to prove it by induction on ω), so $\sup\{\mathfrak{A}_n\} \leq \mathfrak{B}$ i.e. $\mathfrak{A} \leq \mathfrak{B}$, hence \mathfrak{A} is the least fixpoint of G.

References

- [1] Chang, C. C. et al (1973), Model Theory, N. H. P. C.
- [2] Kleene, S. (1952), Introduction of metamathematics, Van Nostrand.
- [3] Malitz, J. (1979), Introduction to Mathematical Logic, Springer-Verlag.

部分模型之间的一些代数关系

宋 方 敏 (南京大学数学系)

摘 要

我们把部分模型定义成三值逻辑的模型。对于 Kleene 语义, 我们讨论部分模型之间的一些代数关系, 并用图方法刻划了这些关系。证明了部分模型上某些算子的不动点定理。文中所讨论的代数关系对发展三值逻辑的模型起一定的作用。