The Equivalence of Medium Propositional Calculus MP* and 3-Valued Łukasiewicz Propositional Calculus L,* ## Zhang Dongmou (Nantong Textile School, Jangsu) In this paper it is proved that the medium propositional calculus MP* is equivalent to the functionally compete 3-valued Łukasiewicz propositional calculus \mathbf{L}_3 . **Definition** | In MP*, $$D(\top)$$: $\top A =_{df} \sim \sim A \prec \neg \sim A$ **Theorem** | In MP*, $\exists A_1 : \vdash \vdash A \prec (B \prec A)$ $\exists A_2 : \vdash \vdash A \prec B \cdot \prec \cdot (B \prec C) \prec (A \prec C)$ $\exists A_3 : \vdash \vdash (A \prec \neg A) \prec A \cdot \prec A$ $\exists A \in \vdash \vdash \vdash A \prec \neg \vdash A \prec \vdash A$ It is clear that if we take $LA_1 - LA_6$ as axioms schemes and LMP as rule of inference, we can obtain a logical system which is just the functionally complete 3-valued Łukasiewicz propositional calculus L_3 , here " \exists " corresponds to "N", " \prec " to "C" and " \top " to Slupecki operator " \top ". (See [3]). Thus, theorem 1 shows that the system MP* implies the system L_3 . ŁMP: $A \rightarrow B$, $A \leftarrow B$ Definition 2 In Ł₃, $$D(\Rightarrow): A \Rightarrow B = {}_{df}A \prec (A \prec B)$$ $$D(\Rightarrow): A \Rightarrow B = {}_{df}(\exists A \prec B) \prec B$$ $$D(\sim): \sim A = {}_{df}((A \prec \top A) \prec \exists (\top A \prec A))$$ $$D(\neg): \neg A = {}_{df}A \prec \top A$$ From the above definition we have Theorem 2 In $$\mathcal{L}_3$$, $$(\in): A_1 A_2, \dots, A_n \vdash A_i$$ $(\tau): \text{ If } \Gamma \vdash \Delta \vdash A, \text{ then } \Gamma \vdash A$ $(\neg): \text{ If } \Gamma, \neg A \vdash B, \neg B, \text{ then } \Gamma \vdash A$ $(\rightarrow_-): A \rightarrow B, A \vdash B; A \rightarrow B, \sim A \vdash B$ $(\rightarrow_+): \text{ If } \Gamma, A \vdash B, \text{ and } \Gamma, \sim A \vdash B, \text{ then } \Gamma \vdash A \rightarrow B$ $(Y): A \vdash \neg \neg A, \neg \sim A$ ^{*} Received Apr.9, 1989. $$(Y_{\sim}): \sim A \mapsto \neg A, \ \neg \neg A$$ $$(Y): \exists A \mapsto \neg A, \ \neg \sim A$$ $$(\exists \exists_{+}), (\exists \exists_{-}): A \mapsto \exists A$$ $$(\exists_{-}): A, \exists B \mapsto \exists (A \rightarrow B)$$ $$(\sim \sim): A \rightarrow A \mapsto \sim \sim A$$ $$(\prec): A \prec B \mapsto (A \rightarrow B) \lor (\sim A \land B)$$ $$(\sim \prec): \sim (A \prec B) \mapsto (\sim A \land \exists B) \lor (A \land \sim B)$$ $$(\exists \prec): \exists (A \prec B) \mapsto A \land \exists B$$ Theorem 3 In \mathcal{E}_3 , for any wff f(P), $f(\neg A) \mapsto f(A \rightarrow \sim A)$ From theorem 2, 3 we know that the system E_3 implies the system MP^* , the refore, we can conclude that E_3 is equivalent to MP^* . ## Refernces - [1] Zhu Wujia, Xiao Xian, JMRE, Vol.8(1988) No. 2, 3, 4. - [2] Xiao Xian, Zhu Wujia, Nature Journal, 8 (1985) 601, 681. - [3] R. Ackermann, An Introduction to Many-valued Logics, London, 1967.