Some Classes of Differential Subordinations and Their Applications*

Zou Zhongzhu

(Department of math. Huaihua Teachers' College, Hunan)

Abstract

Let G be univalent in the unit disc Δ . Let $\psi: C^2 \times \Delta \rightarrow C$ be analytic in a domain $D \subset C$ and let p(z) be analytic in Δ with $(p(z), zp'(z); z) \in D$ when $z \in \Delta$. Assume that p(z) satisfies the differential subordination

$$\psi(p(z), zp'(z); z) \prec G(z), z \in \Delta$$

(where " \prec " denotes subordination). We determine some conditions on ψ and G so that $\operatorname{Re} p(z) > \rho$ in Δ and give some applications of these resullts.

Let $\Delta = \{|z| < 1\}$, $H\epsilon(\Delta)$ be the class of analytic functions f(z) in Δ and let $S(\Delta)$ be the subclass of $H(\Delta)$ consisting of functions which are univalent in Δ . At first we prove a lemma.

Lemma Let $\Omega \subset C$, $a \in C$ with $\operatorname{Re} a > \tau$. Suppose that the function $\psi \colon C^2 \times \Delta \to C$ is analytic in a domain $D \subset C$ and satisfies the condition

$$\psi(\tau + ix, y; z) \in \Omega, z \in \Delta$$
 (1)

for all real x and $y \le -\frac{1}{2\operatorname{Re}(a-\tau)} |(a-\tau)-ix|^2$.

If $p(z) \in H(\Delta)$ with p(0) = a and

$$\psi(p(z), zp'(z); z) \in \Omega, z \in \Delta, \qquad (2)$$

then $\operatorname{Re} p(z) > \tau$ in Δ .

Proof Clearly, we need only to prove that

$$p(z) \prec \frac{a + (\overline{a} - 2\tau)z}{1 - z}, z \in \Delta.$$
 (3)

To do this, let

$$p(z) = \frac{a + (\overline{a} - 2\tau)\omega(z)}{1 - \omega(z)}, \quad z \in \Delta.$$
 (4)

Where $\omega(z) \in H(\Delta)$ with $\omega(0) = 0$ and $\omega(z) \neq 1$ in Δ . We wish to show $|\omega(z)| < 1$ for all $z \in \Delta$. If this is not the case, then there is a point z_0 in Δ satisfying $|z_0| = r < 1$ such that

^{*} Received Nov. 28, 1989.

$$\max_{|z|=r} |\omega(z)| = |\omega(z_0)| = 1.$$

By Jack's Lemma, we obtain $z_0\omega'(z_0) = l \omega(z_0)$, where $l \ge 1$. Let $\omega(z_0) = e^{i\theta}$ (0 $< \theta < 2\pi$). A simple calculus yields

$$p(z_0) = \tau + ix,$$

where

$$x = \operatorname{Im} a + \frac{\sin \theta}{1 - \cos \theta} \operatorname{Re}(a - \tau) \in R$$

and

$$z_0 p'(z_0) = -\frac{l}{1 - \cos \theta} \operatorname{Re}(a - \tau) .$$

From (2) we obtain

$$\psi(p(z_0), z_0 p'(z_0), z_0) = \psi(\tau + ix, -\frac{l}{1 - \cos\theta} \operatorname{Re}(a - \tau); z_0) \in \Omega.$$
 (5)

On the other hand, we have

$$-\frac{l}{1-\cos\theta}\operatorname{Re}(a-\tau) \leq -\frac{1}{1-\cos\theta}\operatorname{Re}(a-\tau) = -\frac{1}{2\operatorname{Re}(a-\tau)}\left|(a-\tau)-ix\right|^{2}.$$

This contradicts (1) and hence we may conclude that $|\omega(z)| < 1$ in Δ . By (4), subordination (3) holds. The proof of the Lemma is complete.

For the case of $\tau = 0$, another proof of this Lemma may be found in [1].

Theorem | Let $a \ge 0$, $p(z) \in H(\Delta)$ with p(0) = a and $0 < \frac{a}{2} \le \tau < a$. If p(z) satisfies the differential subordination

$$p(z) + a \frac{z p'(z)}{p(z)} \prec G(z), z \in \Delta,$$

then $\operatorname{Re} p(z) > \tau$ in Δ . Where

$$G(z) = \frac{a + (a - 2\mu)z}{1 - z}$$
, $\mu = \tau - \frac{a(a - \tau)}{2\tau}$.

Proof The function G(z) is a conformal map of Δ onto the half-plane $\operatorname{Re} W$ $> \tau - \frac{a(a-\tau)}{2\tau} \text{ in the } W - \operatorname{plane.}$

Setting $\Omega = G(\Delta)$ and

$$\psi(p(z), zp'(z), z) = p(z) + a \frac{zp'(z)}{p(z)}$$

in Lemma, hence we obtain

$$\psi(p(z), zp'(z); z) \in \Omega, z \in \Delta.$$

We shall show that ψ satisfies the condition (1). In fact, for all $x \in R$, $z \in \Delta$ and

$$y \le -\frac{1}{2(a-\tau)} \{(a-\tau)^2 + x^2\},$$

We have

Re
$$\psi(\tau + ix, y; z) = \tau + \frac{a\tau y}{\tau^2 + x^2} \le \tau - \frac{a(a - \tau)}{2\tau}$$
,

and hence the condition (1) holds, i.e. $\psi(\tau + ix, y; z) \in \Omega$. The conclusion of Theorem 1 follows from the Lemma.

Corollary | Let $\gamma \ge \beta(1-2\rho)$, $\beta > 0$, $0 \le \rho < 1$. Let $h(z) \in H(\Delta)$ with h(0) = 1 and satisfying

Re
$$h(z) > \rho - \frac{1-\rho}{2(\gamma + \beta \rho)}, z \in \Delta$$
.

Suppose $q(z) = 1 + \cdots$ be a regular solution of the differential equation

$$q(z) + \frac{zq'(z)}{\beta q(z) + y} = h(z)$$
 (6)

in Δ , then $\operatorname{Re} q(z) > \rho$ in Δ .

Proof Setting $a = \beta + \gamma$, $\tau = \beta \rho + \gamma$, a = 1 and $p(z) = \beta q(z) + \gamma$ in Theorem 1, we have $0 < \frac{a}{2} \le \tau < a$, and $\beta h(z) + \gamma < \frac{a + (a - 2\mu)z}{1 - z}$, $(z \in \Delta)$, where $\mu = \tau - \frac{a - \tau}{2\tau}$.

Together with (6), all the conditions of Theorem 1 are satisfied, and so we have $\text{Re}(\beta q(z) + \gamma) > \tau$, therefore conclusion of corollary 1 holds.

By the help of the proof of Theorem 1 we can moreover prove the following theorem.

Theorem 2 Let $p(z) \in H(\Delta)$, p(0) = a, $\operatorname{Re} a > \tau$. If $a \in R$, $a\tau \ge 0$ and p(z) satisfies

$$P(z) + a \frac{z p'(z)}{p(z)} \prec \frac{a + (\overline{a} - 2\tau)z}{1 - z}$$
, $z \in \Delta$,

then Re $p(z) > \tau$ in Δ .

In order to prove Theorem 3, we consider the function (compare [4]):

$$Q_a(z) = 2C \frac{A(z)}{1 - A(z)^2}, \quad z \in \Delta, \tag{7}$$

where Re a > 0, $A(z) = (z + b)/(1 + \overline{b}z)$ with

$$C = \frac{1}{\text{Re}a} (|a| \sqrt{a^2 + 2a \text{Re}a} + a \text{Im}a), \quad a > 0$$

and $b \in \Delta$ is defined by $a = 2 Cb/(1 - b^2)$.

Since A(z) is an automorphism of the disc $\overline{\Delta}$, therefore $Q_a(z)$ is univalent in Δ (i.e. $Q_a(z) \in S(\Delta)$). Clearly, $Q_a(0) = a$ and $Q_a(\Delta)$ is the complex plane with a slit along the half-lines. Rew = 0, Imw $\geq C$ and Rew = 0, Imw $\leq -C$.

Theorem 3 Let a > 0, Re a > 0 and Im $a \le 0$. If $p(z) \in H(\Delta)$ with p(0) = a and

$$p(z) + a \frac{z p'(z)}{p(z)} \prec Q_a(z), \quad z \in \Delta, \tag{8}$$

then $\operatorname{Re} p(z) > 0$ in Δ .

Proof If we let $\Omega = Q_a(\Delta)$ and

$$\psi(p(z), zp'(z); z) = p(z) + \alpha z p'(z) / p(z), z \in \Delta$$

in Lemma, then

$$\psi(p(z),zp'(z);z)\in\Omega, z\in\Delta.$$

We can prove that ψ satisfies condition (1), i.e.

$$s(x, y) = \psi(ix, y; z) = ix + ay/ix \in \Omega$$

for all $x \in R$, $z \in \Delta$ and

$$y \le -\frac{1}{2\text{Re}\,a}|a-ix|^2 = -\frac{1}{2\text{Re}\,a}(x^2+|a|^2-2x\text{Im}\,a)$$
.

In fact, if x = 0, then $s(x, y) = \infty \in \Omega$. If x > 0, then $\operatorname{Re} s(x, y) = 0$ and

Ims
$$(x, y) = x - \frac{ay}{x} \ge x + \frac{ax^2 + a|a|^2 - 2ax \text{Im} a}{2x \text{Re } a} \ge C$$
.

Similarly, for x < 0 we deduce Re s(x, y) = 0 and $\text{Im } s(x, y) \le -C$. Hence conclusion of Theorem 3 follows from the Lemma.

Remark The restriction for complex number c in [4, Theorem 1] is not sufficient, because for x < 0, one cannot deduce $\text{Im } p(z) \ge C$ (see [4]). A similar case appeared in [4, Theorem 2] too.

By using Theorem 3 we obtain the following results.

Corollary 2 Let $p(z) \in H(\Delta)$ with p(0) = 1. For $\alpha > 0$ and

$$p(z) + a \frac{zp'(z)}{p(z)} \prec Q_1(z) = \frac{1+z}{1-z} + \frac{2az}{1-z^2}, \quad z \in \Delta,$$

we have $p(z) \prec (1+z)/(1-z)$ in Δ .

For a = 1, this result was proved in [2].

From Corollary 2 we easily obtain (because $C = \sqrt{a(a+2)}$).

Corollary 3 Let a > 0 and $p(z) \in H(\Delta)$ with p(0) = 1. If either

$$|p(z) + a - \frac{zp'(z)}{p(z)} - 1| < 1 + a$$

or

(ii)
$$\left|\operatorname{Im}\left(p(z) + az \, p'(z) / p(z)\right)\right| < \sqrt{a(a+2)}$$

holds for $z \in \Delta$, then Re p(z) > 0 in Δ .

We now consider some applications of these Theorems and Corollaries. Let

$$A = \{ f(z) : f \in H(\Delta), f(0) = 1 - f'(0) = 0 \}$$

and let Δ stands for $\Delta \setminus \{0\}$.

If $a \in R$, $\rho < 1$, $\text{Re} \mu > \rho$, $g(z) \in S(\Delta)$ and $f(z) \in A$ with $f(z) \cdot f'(z) \neq 0$ in Δ such that

$$a(1 + \frac{zf''(z)}{f'(z)}) + (\mu - \alpha)\frac{zf'(z)}{f(z)} \prec g(z), \quad z \in \Delta, \qquad (9)$$

then we say that f(z) belongs to the class $M(\alpha, \mu, \rho; g(z))$.

For the choice of $\mu=1$ and $g(z)=\frac{1+(1-2\rho)z}{1-z}$, $M(\alpha,\mu,\rho;g(z))$ reduces to the class of α -convex functions of order ρ . Again when $\alpha=0$, $\mu=e^{i\lambda}$, $\lambda\epsilon(-\pi/2,\pi/2)$, and $g(z)=\frac{e^{i\lambda}+(e^{-i\lambda}-2\rho\cos\lambda)z}{1-z}$, this yields the class of λ -spiralike functions of order ρ , and so on.

St. Ruscheweyh and V. Singh proved the following result in [3].

Theorem A Let $\mu = \beta + \gamma$, $\beta > 0$, $\text{Re}\gamma \ge 0$. Assume $f(z) \in M(1, \mu, \text{Re}\gamma, g(z))$, where

$$g(z) \prec \frac{\mu + (\overline{\mu} - 2\operatorname{Re} y)z}{1 - z}, z \in \Delta.$$

Then $\operatorname{Re}(\mu z f'(z)/f(z)) > \operatorname{Re} y$ in Δ .

From Theorem A, one can deduce a sufficient condition related to spiralike functions, this result discussed by Eenigenburg et al in [6].

We now give a generalized version of the Theorem A.

Theorem 4 Let $a \rho \ge 0$ and

$$g(z) \prec \frac{\mu + (\overline{\mu} - 2\rho)z}{1 - z}, z \in \Delta.$$

Assume $f(z) \in M(a, \mu, \rho; g(z))$, then

$$\operatorname{Re}(\mu \frac{zf'(z)}{f(z)}) > \rho$$

in Δ .

Proof If we let

$$p(z) = \mu z f'(z) / f(z), \qquad (10)$$

then

$$p(z) + a \frac{z p'(z)}{p(z)} \prec g(z), \qquad (11)$$

the conclusion immediately follows from Theorem 2.

By Theorem 4 we obtain

Corollary 4 Let $\lambda \in (-\pi/2, \pi/2)$, $\rho < 1$, $a \in R$, $a \rho \cos \lambda \ge 0$. If

$$g(z) \prec \frac{e^{i\lambda} + (e^{-i\lambda} - 2\rho\cos\lambda)z}{1 - z}, z \in \Delta,$$

then

$$M(a,e^{i\lambda},\rho\cos\lambda;g(z))\subset S_{\lambda}(\rho).$$

Where $S_i(\rho)$ is the class of λ -spiralike functions of order ρ .

By means of Theorem 2, 3 and combining (10) with (11) we can obtain

Theorem 5 Let $a \ge 0$, $0 \le \rho < 1$, $\mu > \rho$. If

$$g(z) \prec \frac{\mu + (\mu - 2\rho)z}{1 - z_k}(Q_u(z)), z \in \Delta,$$

then

$$M(a, \mu, \rho, g(z)) \subset S^*(\frac{\rho}{\mu}) (M(a, \mu, 0, g(z)) \subset S^*(0)).$$

Where $S^*(\rho)$ is the class of starlike functions of order ρ .

Finally we discuss a class of integral operators.

Let β , $\gamma \in C$, $\beta \neq 0$, $f(z) \in A$, we denote

$$F(z) = J_{0}(f)(z) = \left\{ \frac{\beta + y}{z^{y}} \int_{0}^{z} t^{y-1} f(t)^{\beta} dt \right\}^{1/\beta}, \ z \in \Delta.$$
 (12)

If we let $p(z) = \beta \frac{zF'(z)}{F(z)} + \gamma$, then by (12) we obtain

$$p(z) + \frac{zp'(z)}{p(z)} = \beta \frac{zf'(z)}{f(z)} + \gamma$$
 (13)

S.S. Miller et al proved the following result in [5].

Theorem B Let β , $\gamma \in C$, $\beta = |\beta|e^{i\lambda}$, $\lambda \in (-\pi/2, \pi/2)$. If $\rho \in R$ and satisfies $-\text{Re}\gamma/R$ Re $\beta \le \rho < 1$, then the integral operator (12) satisfies

$$J: S_{\lambda}(\rho) \rightarrow S_{\lambda}(\rho)$$
.

This Theorem improved the corresponding result discussed by S. Bajpai in [7].

Clearly, Theorem B is an immediate corollary of the Theorem 2.

By using Theorem 3 we obtain

Theorem 6 Let $\beta = |\beta| e^{i\lambda}$, $\lambda \in (-\pi/2, \pi/2)$ and

$$\operatorname{Re}(\beta + \gamma) > 0 \ge |\beta| \rho \cos \lambda + \operatorname{Re} \gamma$$
, $\rho < 1$.

If $\operatorname{Im}(\beta+\gamma)\leq 0$, $f(z)\in A$ and

$$\beta \frac{zf'(z)}{f(z)} + y \prec Q_{\beta+y}(z), z \in \Delta,$$

then the function F(z) given by operator (12) belongs to $S_{\lambda}(\rho)$.

Proof From Theorem 3 and (13), we obtain $\operatorname{Re} p(z) > 0 \ge |\beta| \rho \cos \lambda + \operatorname{Re} y$. Hence

$$\operatorname{Re}(e^{i\lambda}zF'(z)/F(z)) > \rho \cos \lambda$$
. $z \in \Delta$.

The proof is complete.

If we let y = 0, $\beta = 1/\alpha > 0$, then (12) becomes

$$F(z) = J(f)(z) = \left\{ \frac{1}{a} \int_0^z t^{-1} f(t)^{1/a} dt \right\}^a.$$
 (14)

Setting p(z) = zF'(z)/F(z), by (14) we have

$$p(z) + a \frac{zp'(z)}{p(z)} = \frac{zf'(z)}{f(z)}$$

From Theorem 2 and corollary 1, we obtain following two results, respectively.

Corollary 5 If a > 0, $0 \le \rho < 1$, then the operator (14) maps $S^*(\rho)$ onto the class of a-convex functions of order ρ , the subclass of $S^*(\rho)$.

Corollary 6 If $\rho \in [1/2, 1)$, $\alpha > 0$, then the operator (14) satisfies

$$J: S^*(\rho - \frac{a(1-\rho)}{2\rho}) \rightarrow S^*(\rho).$$

By Corollary 6 (letting a = 1), we obtain

Corollary 7 If $\rho \in [1/2, 1)$, $g(z) \in A$ and

$$\operatorname{Re}(1+\frac{zg''(z)}{g'(z)})>\rho-\frac{1-\rho}{2\rho}$$

in Δ , then $g(z) \in S^*(\rho)$,

In particular, letting $\rho = 1/2$ in corollary 7, this result is well-known. Also, if $g(z) \in A$, and $|g''(z)/g'(z)| \le 1$ in Δ , then $g(z) \in S^*(1/2)$.

From Theorem 6 or Corollary 2 we can deduce

Corollary 8 If a > 0, $f(z) \in A$ and

$$\frac{zf'(z)}{f(z)} \prec Q_1(z) = \frac{1+z}{1-z} + \frac{2az}{1-z^2}, z \in \Delta,$$

then the function F(z) given by (14) belongs to $S^*(0)$.

This result was recently proved in [4].

References

- [1] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. of Math. Anal. and Appl., 65 (1978), 289—305.
- [2] ——, On some classes of first -order differential subordination, Michigan Math.J., V. 32 (1985), 185—195.
- [3] St. Ruscheweyh et al, On a Briot-Bouquet equation related to univalent functions, Rev. Roumaine Math. Pures Appl., 26 (1979), 285-290.
- [4] P. T. Mocanu, Some integral operators and starlike functions, ibid, 31 (1986), 231-235.
- [5] S.S. Miller and P.T. Mocanu, On a class of spiralike integral operators, ibid, 31 (1986), 225—230.
- [6] P. T. Eenigenburg et al, On a subclass of Bazilevic functions, Proc. AMS, 45 (1974), 88-92.
- [7] S. K. Bajpai, An analogue of R. J. Libera's result, Rend. Mat., 12 (1979), 285-289.

一类微分从属性及其应用

邹 中 柱

(湖南怀化师范专科学校数学系)

摘 要

记 $\Delta = \{|z| < 1\}$. 设函数 $\psi : \mathbb{C}^2 \times \Delta \to \mathbb{C}$ 在区域 $D \subset \mathbb{C}$ 中解析, G 是 Δ 中的单叶解析函数 . 若 Δ 中的解析函数 p(z) 满足微分从属关系

$$\psi(p(z), zp'(z); z) \prec G(z), z \in \Delta,$$

则可确定 ϕ 和G的某些条件使之 $\operatorname{Re} p(z) > \rho$ (z ϵ Δ), 并且给出这些结果的某些应用.