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An Extension of an Inversion Theorem of Carlitz*

L.C.Hsu (Xu Lizhi)
(Dalian University of Technology)

For g#+1, Gauss g-coefficients may be defined as follows
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where 0<< k< n and (q)0=1.*For k>n one may define [Z] =0,

Theorem Let {a,(z)} and {b,(z)} be any two sequences of complex valued
functions of z and let g (¢7~1) be an arbitrary complex number such that
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for all non-negative integers x and »n with ¢(x,0,9)=1. Then we have the fol-

lowing pair of reciproca'l relations
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Three important special cases have to be mentioned. (i) The inversion theo-
rem of L. Carlitz just corresponds to the case where a;,(¢)=a; and b;(q)=§; are
complex constants. (ii) Define aj(q):a,—ﬂ,/(q_'-l) and b,(g)=$,/(g '-1).Then
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so that (1) and (2) yield a reciprocal pair just equivalent to that given by W,
C.Chu (cf. Mathematica Applicata, 2(1989), No.l, 47—52). (iii) In the case (ii)
letting g—1 so that _

(a)(@+q "bgN—>(a;+ B0, (11~ ()
we see that (1) and (2) lead to the basic inverse relations due to H. W. Gould
and L.C. Hsu (cf. Duke Math. J. 40(1973), No.4, 885—891; 893—901).

It suffices to show (1)=1(2). This can be accomplished by using some pro-
perties of g-coefficients and by a tricky splitting of the factor

n"k k—~j
'l —¢q - olk—1,n 1-¢g
'1_ n—j (ak+1+q bk+1)+ co(k,n) 1_qn4.j

. (n k)(n—%-1)
where a)(k 1)_ Py ak+]Eak+1(q) and kaEka(q).
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