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Abstract

One reaction-diffusion equation
P, PP T =Y (@)
has been presented in the study of Morphogenesis. In this paper, reasonable de-
finite conditions of the e_quation are proposed and the asymptotic form of its
solution is obtained by using perturbation method. So the existence of solution of
this probtem is solved.

| . Physical background and its mathematical model

‘In a 1-dimensional thin tube containing nutrition liquid, cells will multiply
and diffuse. The diffusion equation can be described by the following dimen-
sionless differential equations

c,toc,~ cu=ylc) (1.1)

v,=¢c, , 0<e<l (1.2)
where C=mass coefficient of the cells, V' =convection velocity and y(C) =inc-
reasing velocity. As the equations are dimensionless, we assume the length of
the tube is 1, In paper [ 1], no definite conditions have been given and certa-
inly any form of the solution can’t be got. It is only pointed out that the most
suitable boundary conditions may be free boundary.

To simplify the mathematical model, we introduce a function ¢(x, ), such
that , C=@Q,, VTEQ,
and equations (1.1) and (1.2) become

Pt EPPrx™ Prxx= V(@) (1.3)
Here, we make such assumptions; the interval of x is 0<<x<<b (er) (0<b ()

1, limb(er)=1) and b is a known slowly varying function of r. Else, we let the
t—>0c0
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_ g,
x=0 Ox

‘ boundary condition at x=(0 be %—

-0 =0, which shows the cells at

x=0 will not diffuse inward or outward and ¢ is knowable at free boundary x
=b(et), e.g., we let c¢| _, =0, _,., =¢g(t) and also let the distribution: of
¢ at initial moment be known ¢ (x,0) = f(x) (0<x<b(0)). Especially suggested
is that the convection velocity ¢ of the cell at free boundary x=b(et) is vary

small, i.e., ¢(b(et),t)=¢a(t)., Thus, we have the following problem

@it 0,0 — P =V (@), (0<x<b(et), t>0) (1.4)
(1) Puxlico=0s s @uliopen =80 (1.5)
9(x,0) = f(x), O<x< b0 (1.6)
Pl e pier, = €alD) (1.7)

where f(x), g(¢t), b(x) and a(¢) are all smooth,
2 . Solving the definite problem (1)
2 a., Assmuming y = ag,, SO Eq.» (1,4) becomes
Pt QP P a9, (a<<0). (2.1)
In actual problem, the order of ¢ is 107*, so we use perturbation methods to
solve the problem [2]. Let the solution be denoted by
o(x, t,e)=@o(x, t)+ep,(x,1) +£2¢p2(}c, z‘_) + see (2.2)
Substituting (2.2) into (2,1), (1.4),(1.5),(1,6)and (1,7),also letting b(0)= b, and
comparing the coefficients of equal powers of ¢ on both sides of equations, we
obtain the following sequence of fixed boundary problems which can be solved in

order

Porx Poxxx— APgx <O<x<b0, f>0) (2.3)
aq)Ox _ - ”

(H) 0x XZO_O’ walx:bo_O (2.4)
Po.{x, 0) = f(x), (0<x<bhy) (2.5)
Pl p,= 0 : (2.6)
Plix™ Praxx=a@ t 1 (x, 1) (0 xby, t>0) (2.7)

(I <p,x,(0,t)=0, (Dlx(bo,t):pl(t) (2.8)
@1 (x,0)=0 (0 x< by) (2.9)
@1, (bgy 1)=q,(1) (2.10)

Since the definite problems of ¢,, @;, «, 9 , - in formal solution (2.2) have the
same form as problem (I[), we will not write them out. If ¢,, @¢,,++ in fixed
boundary problem (II), (I), --- are found, and they are bounded to t, (2.2)
will be asymptotic solution (i.e. approximate analytic solution) of free boundary
problem (T1)[2].

Now we solve problem (]I). From (2.3)~(2.5) we get
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: o _(k+1/2)%”
6 b —-alt + 1 .
por= L Are B cos Kt L/2)mx (2.11)
where : °

dx

2 g (k=1/2)ax
A= bofo f{x)cos b,

Integrating (2.11) for x and combining (2.11) with (1.6), we have

ZO . (k 1/2)7[x k Ca- (k+122)1"2 at
- —( = b +

where ¢, is an arbitrary constant.
Next we solve problem ([[). In problem (II)
B Xy )= = @000y P11 = 8(0) =@, by, D01,
q:(1) = alt) = @5, (bo, D01
From (2,7)~(2.9) we get
- Letllofuon (k+i/2)mx

ot a
= 8 s
@ k;() fOBk(r)e drco b

o _ (k+1/2)2 ,
(a 1 ] g a
+3 cpe by ’cos—(K—Jr 1b/2)7rx +ep (1) (2.13)
0

where H (x,t)=¢e “"h(x,t), p(t)=€e “pt).

_ 2 b . (k+1/2)n¢
Bk(T)—bofo (H,(&, 1) - pl(1)]cos 5 d¢

_2 b (k+1/2)x¢
C.,= boJ;) pl(O)cos——bo d¢
with ¢, =¢e’’, we integrate (2.13) with respect to x and combining with (2. 10)
we have

l X ar ! :
q)l(x,t):jbol/J(x, t)e dx+J;)q1(t)dt+cl (2.14)

From (2.12) and (2.14) the first order asymptotic solution of (I ) is resulted
P(x, 1) =o(x, 1) +e@,(x, 1) +0(&)
- From above-mentioned solving process, the asymptotic solution to original
' problem (1) is unique except the difference of a constant. Only if a(r) and g(¢)
satisfy some conditions, ¢ are bounded for r. So asymptotic solution is uniformly
valid [2]. As for higher-order solution, the solving method is completely simi-
lar to that of the first order, which will not be disscussed here.
2b. Assume p(¢,) is a nonlinear function, differentiable in any order.
Here again substituting (2.2) into ([ ), we gel the definite problem of de-
generate solution g@y(x, 1) ,
Porx™ Poxxx= 2 (Pox) (0 x<by,1>>0) (2.15)

~ (V) @00, ) =04, (by,t)=10 (2.16)
P0,(x,0) = f(x), 0< x< by) (2.17)
¢0;<boat):0 (2.18)
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Still let @,,= ¥o(x, t), we have

Yoo~ Yorx=» ($o) 0<x<by, t>0) (2.19)
(V) Yo (0,1) = 9oy, 1) =0 (2.20)
Po(x, 0) = f(x), (0< x< by) (2.21)

As the eigenvalue and eigenfunction of the definite problem of the homogene-
ous equation of problem (V) are ]

Ay=Ck+1/2)x/b,

Yor(x) =cos(k+1/2)ax/by k=0,1,2,
and the normalized function system of (V) is

Yor(X) = J2/ by g (x)

So we have
by — —
jo Vol X on(x)dx=4,, (2.22)

Let (V) have solution p,(x, t)=2‘ak(t)l/)_ok(x) . Substituting y,(x, ) into (2,19)
k=0

and (2.21), we have

o da,
L “a;

o oo .
+ Ara e x) =y [k;)ak(t)(ﬁok( x)]

S a0 e x) = f(x)
k=0

Combining with (2.22) yields

da, 2 b o — —
T +/1,,a,,—f0 y l:k;)'ak(t)lﬁok(x)]l/)o,,(x)dx

a,(0) = [ fC0 T, (x)dx, n=0,1,2, -
0

Now we use successive approximation to get the solution q,(f). First, let’s
solve the following problem"

bo m — -
a,(t) +Aﬁan:jo Y[ (1) ¥ ()P, (x) dx (2.23)
k=0
bo _
a,,<0):j0 (X gy,(x)dx, n=0,1,e, m _ (2.24)
7 by m
Let g, a ,az,-..,am)zfo » [kz a (Do) Yon(x) dx—Ala, .
. =0
Introduce vectors
ay(t) &o ay,(0)
A=| & (D) , G=| & |, 49=] a(0)
a ) gn- a,(0)
The vector representations of (2,23) and (2.24) are
{ d4/dr=G
A],_,=A°
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The process of successive approximations is below. Let
Ay = A°
A(1)= A%+ [G(A%dr = A4+ G4t

A= A%+ fOtG[A_,._l( 9 Jds (2.25)

It can be proved that A(¢) convergess uniformly to A(r) at the interval
{0, T), when functions » and f satisfy some conditions [3]. Thus, the appro-
ximate solution ot problem (V) reads '

¢o:¢’0x~l§)ak(f)$_0k(ﬂ (2.26)
Combining (2,23) with (2,25) ¢¢,(by,t) =0, we have
| Polx, = [ holx, D dx+cq (2.27)

where ¢, is an arbitrary constant. ‘
Below we’ll get the approximate solution of first-order asymptotic solution
9,(x,t). Its definite problem is

Pl Proxx= (X, )+ 0,0 (@4,) (0< x< by, t>0)

@180, 8) =0, @,,(by, 1)=p(1)
(VD) : (2.28)
?1(x,0)=0 (0<x<by)

‘ @1.(by, 1) =¢q,(8)
where h(x, 1) = ~@o@oxxs D) = g(t) = b (0)tg,Lbo,1),
a:(t) =alt) = b’ (0) 1@y, (byy X) .
Let ¢,,=¢,+ p,(t), we bave from (V])
b= = H Py x, 1)
(v $1 0, 8) =, (by, 1) =0
¥, (x,0) = —p(0)
where H,($,, x, 1) =p" (@) (¥, + p(O ]+ b (x, 1) .
For problem (VI) using above variation of parameter and successive appro-
ximaiton, we obtain the approximate solutions ¢,(x, ¢) and a(x, t) of p(x, 1)

and ¢,(x, t) respectively, i.e.

Fix, =3 a0 cos—(—"ibe
k=0

0
P1(x, 0 = ["Ghx, 0+ p(0)dx+ [ (D di+e,

Therefore, the asymptotic solution to problem (1) is got
o(x, 1)=@o{x, 1)t ep,(x, t) +0(£2)l
Next consider a relatively special case. When the order of magnitude of
@(x,t) is ¢ and y(0) =0, it’s allowed to let ‘
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q)(x,t)=8(p,(x,t)+82<p2(x,t)+.--- . (2.29)
Substituting (2.29) into (1) and comparing the coefficients of like powers of

e give
&' (P PV 0 (0<x<by, >0)
P1:L0,8)=0, @1.(by,2)=2g(1)
Pre(x,0) =0 (0< x< by)
@1 (byst)=alt),
¢’ Pax wzxxﬁl”(zL)wfﬁy’(O)«sz (0<x<bhy,t>0)

@200, 8)=0, @2.{by, )=0

@, {x,0)=0 (0<x<by)

@,,(by, 1) =0.
which are definite problems of a series of - linear equations, The solving method
is analogeous to the case when y(g,) is a linear function. It's easy , so we will
not describe it here. '
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