Journal of Mathematical Reserch and Exposition Vol.11 No.2, May, 1991.

Approximation by Integral Type Meyer-König and Zeller Operators*

Li Luoqing Xu Jihua

(Habei University)

Abstract

This paper deals with the convergence rate and the L^p -saturation for approximation by integral type Meyer-König and Zeller operators. The open problems posed in [2] are solved.

The operators

$$M_{n}(f, x) = \sum_{k=0}^{\infty} f(\frac{k}{n+k}) m_{nk}(x) , \quad 0 \le x < 1,$$

$$m_{nk}(x) = {n+k \choose k} x^{k} (1-x)^{n+1}$$

are known as Meyer-König and Zeller operators. Their global behaviour was described by Becker and Nessel in [1]. However, we know that the operators M_n cannot be used in integral metrics. In order to extend M_n to L^p -metric Chen Wenzhong introduced in [2] the following modified operators

$$L_{n}(f,x) = \sum_{k=0}^{\infty} \left(C_{nk}^{-1} \int_{0}^{1} m_{nk}(u) f(u) du \right) m_{nk}(x), \quad f \in L^{1}(0,1),$$

$$C_{nk} = \int_{0}^{1} m_{nk}(u) du,$$

and called them the integral type Meyer-König and Zeller operators. As for approximation by L_n , Chen proved several results. In this paper, we discuss the L^p approximation by L_n . We have proved the quantitative theorem and L^p -saturation theorem for approximation by L_n . Therefore the open problems posed in [2] are solved.

Let $\varphi(x) = x(1-x)^2$, $1 \le p \le \infty$, $\|\cdot\|_p = \|\cdot\|_{L^p(0,1)}$ and $S_p = \{f \in L^p(0,1), f' \text{ absolutely continuous, } \varphi f'' \in L^p \text{ for } p > 1, \text{ or } \varphi f' \in BV, p = 1\}$. The weighted modulus for $f \in L^p$ is defined by

$$\omega_{\varphi}(f,t)_{p} = \sup_{0 < h \le t} \| \triangle_{h/\varphi}^{2} f \|_{p}$$

$$\triangle_{h}^{2} f(x) = \begin{cases} f(x+h) - 2 f(x) + f(x-h), & x \pm h \in (0,1), \\ 0 & x \pm h \in (0,1). \end{cases}$$

^{*} Received July .2 1989.

Our main results are:

Theorem | For $f \in S_p$, we have

$$||L_{n}f - f||_{p} \leq \begin{cases} Cn^{-1}(||f'||_{p} + ||(\varphi f')'||_{p}), & 1
(1.1)$$

where C is a constant depending only on p.

Theorem 2 Let $f \in L^p$. Then

$$||L_n f - f||_p \le C(n^{-1} ||f||_p + \omega_{\varphi}(f, n^{-\frac{1}{2}})_p).$$
 (1.3)

Theorem 3 Suppose that $f \in L^p$. Then

(1)
$$||L_n f - f||_p = o(n^{-1})$$
 iff $f = \text{const.a.e.}$;

$$(2) \| L_n f - f \|_p = O(n^{-1}) \text{ iff } f \in S_p.$$

2 We now establish some lemmas

Lemma | Let $s(x) = x(1-x)^{-1}$. Then

$$L_n(s,x)-s(x)=(n+1)^{-1}$$
.

Proof By calculating, we have

$$L_{n}(s,x) = \sum_{k=0}^{\infty} \left(C_{nk}^{-1} \int_{0}^{1} t (1-t)^{-1} m_{nk}(t) dt \right) m_{nk}(x)$$

$$= \sum_{k=0}^{\infty} \left(\frac{(n+k+1)(n+k+2)}{n+1} \cdot \frac{(k+1)}{n} \int_{0}^{1} m_{n-1,k+1}(t) dt \right) m_{nk}(x)$$

$$= \sum_{k=0}^{\infty} \frac{k+1}{n+1} m_{nk}(x) = (n+1)^{-1} + x(1-x)^{-1}.$$

The Lemma 1 is proved.

Lemma 2 Let
$$S_0 = 0$$
, $S_k = \sum_{i=1}^k i^{-1}$, $k \ge 1$ and $r_{nk} = C_{nk}^{-1} \int_0^1 \log t m_{nk}(t) dt$. Then $r_{nk} = r_{0k+n} - (S_{n-k} - S_k)$, $r_{0k+n} = -(n+k+1)^{-1} - (n+k+2)^{-1}$.

Proof Integrating by parts we get

$$\int_0^1 \log t m_{nk}(t) dt = -C_{nk}(k+1)^{-1} + n^{-1}(n+1) \int_0^1 m_{n-1, k+1}(t) \log t dt.$$

Thus

$$r_{nk} = -(k+1)^{-1} + C_{nk}^{-1} n^{-1} (n+1) \int_0^1 m_{n-1, k+1}(t) \log t \, dt$$

$$= -(k+1)^{-1} + C_{n-1, k+1}^{-1} \int_0^1 m_{n-1, k+1}(t) \log t \, dt = -(k+1)^{-1} - r_{n-1, k-1} dt$$

Hence $r_{nk} = r_{Ok+n} - (S_{n+k} - S_k)$. On the other hand,

$$r_{Ok+n} = C_{Ok+n}^{-1} \int_0^1 m_{Ok+1}(t) \log t dt$$

$$= (n+k+1)(n+k+2) \int_0^1 t^{k+n} (1-t) \log t dt$$

$$= -(n+k+1)^{-1} - (n+k+2)^{-1}.$$

We complete the proof of Lemma 2.

Lemma 3 Let $r(x) = \log x - \log(1 - x)$ and $p^{-1} + q^{-1} = 1$ for $1 \le p < \infty$, or $q^{-1} = 1$ for $p = \infty$. We have

 $\|\varphi^{\frac{1}{q}}(L_n r - r)\|_{p} = O(n^{-1})$ $(n \to \infty)$.

Proof Since L_n are linear operators, we need only prove the following two inequalities

$$\|\varphi^{\frac{1}{q}}(L_n(\log t, x) - \log x)\|_{p} \le Cn^{-1}$$
 (2.1)

and

$$\|\varphi^{\frac{1}{q}}(L_n(\log(1-t),x)-\log(1-x))\|_p \le Cn^{-1}.$$
 (2.2)

For $\sum_{k=0}^{\infty} (S_{n+k} - S_k) m_{nk}(x) = \sum_{i=1}^{n} i^{-1} (1-x)^i$, we have by lemma 2

$$\begin{split} L_{n}(\log t, x) - \log x &= \sum_{k=0}^{\infty} \left(C_{nk}^{-1} \int_{0}^{1} \log t \, m_{nk}(t) \, \mathrm{d}t \right) m_{nk}(x) + \sum_{k=1}^{\infty} k^{-1} (1-x)^{k} \\ &= \sum_{k=0}^{\infty} \left(r_{0k+n} - \left(S_{n+k} - S_{k} \right) \right) m_{nk}(x) + \sum_{k=1}^{\infty} k^{-1} (1-x)^{k} \\ &= O(n^{-1}) + \sum_{k=n+1}^{\infty} k^{-1} (1-x)^{k} \,. \end{split}$$

We here use the fact $\sum_{k=0}^{\infty} m_{nk}(x) r_{Ok+n} = O(n^{-1})$ (cf. [2, lemma 1]). Therefore

$$\int_{0}^{1} |L_{n}(\log t, x) - \log x| dx \le Cn^{-1} + \sum_{k=n+1}^{\infty} (k(k+1))^{-1} \le Cn^{-1}$$

and

$$\sup_{1 \le x \le 1} |x(L_n(\log t, x) - \log x)| \le \sup_{0 \le x \le 1} (Cn^{-1}x + \sum_{k=n+1}^{\infty} k^{-1}x(1-x)^k) \le Cn^{-1}.$$

By the Riesz-Thorin theorem (cf. [3, p.525]), we have proved the inequality (2.1).

With respect of (2.2), we have by calculating

$$\begin{split} L_n(\log(1-t),x) &= \sum_{k=0}^{\infty} m_{n\,k}(x) \left(r_{Ok+n} - \left(S_{n+k} - S_{n+1} \right) \right) \\ &= O(n^{-1}) - \sum_{k=0}^{\infty} m_{n\,k}(x) \left(S_{n+k} - S_{n+1} \right) = O(n^{-1}) + \log(1-x) \,. \end{split}$$

So $L_n(\log(1-t), x) - \log(1-x) = O(n^{-1})$, the inequality (2.2) holds apparently. The lemma 3 is proved.

3 The proof of theorem | Let $g(x) = s(x) + r(x) = \frac{x}{1-x} + \log \frac{x}{1-x}$. For any x, $t \in (0,1)$ and $f \in S_p$, there holds

$$f(t) - f(x) = \varphi(x) f'(x) (g(t) - g(x)) + \int_{t}^{x} (g(u) - g(t)) d(\varphi(u) f'(u)). \tag{3.1}$$

Applying the operators L_n to (3.1) in the variable t, we obtain

$$L_{n}(f,x)-f(x)=\varphi(x)f'(x)(L_{n}(g,x)-g(x))+L_{n}(\int_{t}^{x}(g(u)-g(t))d(\varphi(u)f'(u))).$$

Taking L^p -norms on both sides and applying lemmas 1 and 2, we obtain

$$||L_n f - f||_p \le C n^{-1} ||f'||_p + ||L_n(\int_{-\infty}^{\infty} (g(u) - g(t)) d(\varphi(u) f'(u)))||_p$$
 (3.2)

(for p=1, $||f'||_p$ is replaced by $||\varphi f'||_{\infty}$).

In order to estimate the second term of the right in (3.2), we consider the linear operators

$$A_n(h, x) = nL_n(\int_t^x (g(u) - g(t)) dh(u), x).$$

Write

$$(g(u)-g(t))_{+}=\begin{cases}g(u)-g(t), & \text{if } u\geq t,\\0, & \text{if } u< t.\end{cases}$$

For $u \in BV$, we have

$$\int_{0}^{1} |A_{n}(h, x)| dx \leq n \int_{0}^{1} |dh(u)| \left(\int_{u}^{1} L_{n}((g(u) - g(\bullet))_{+}, x) dx + \int_{0}^{u} L_{n}((g(\bullet) - g(u))_{+}, x) dx \right).$$

Since $\int_0^1 (L_n(f, x) - f(x)) dx = 0$ for any $f \in L^1$,

$$\int_{u}^{1} L_{n}((g(u) - g(\bullet))_{+}, x) dx + \int_{0}^{u} L_{n}((g(\bullet) - g(u))_{+}, x) dx$$

$$= \int_{0}^{u} (L_{n}(g, x) - g(x)) dx = O(n^{-1})$$

which implies

$$\int_0^1 |A_n(h, x)| dx \le C ||h||_{BV}.$$

Put $H_n(t,x) = \sum_{k=0}^{\infty} C_{nk}^{-1} m_{nk}(t) m_{nk}(x)$. Using lemmas 1 and 2, we obtain

$$\begin{aligned} |A_n(h,x)| &= nL_n\left(\int_t^x (g(u) - g(t))h'(u) du, x\right) \\ &\leq n\|h'\|_{\infty} \int_0^1 H_n(t,x) \int_t^x (g(u) - g(t)) du dt \\ &= n\|h'\|_{\infty} \int_0^1 H_n(t,x) (x(\log x - \log t) + (1-x)(\log(1-x)) \\ &- \log(1-t)) + \left(\frac{t}{1-t^-} \frac{x}{1-t}\right) + (\log(1-t) - \log(1-x))) dt \\ &= n\|h'\|_{\infty} \cdot O(n^{-1}) \leq C\|h'\|_{\infty} \end{aligned}$$

The Riesz-Thorin theorem gives

$$||A_n(h)||_p \le C ||h'||_p$$
, $p \ge 1$, $h' \in L^p(0,1)$.

Taking $h(u) - \varphi(u) f'(u)$, we see that

$$||L_{n}(\int_{t}^{x}(g(u)-g(t))d(\varphi(u)f'(u)))||_{p} = n^{-1}||A_{n}(\varphi f')||_{p}$$

$$\leq \begin{cases} Cn^{-1}||(\varphi f')'||_{p} & p>1, \\ Cn^{-1}||\varphi f'||_{BV} \end{cases}$$
(3.3)

Combining (3.2) and (3.3), we complete the proof of theorem 1.

4 The proof of the theorem 2

For any $h'' \in L^p(0,1)$, from theorem 1 we can also obtain

$$||L_n h - h||_p \le C n^{-1} (||h||_p + ||\varphi h''||_p).$$

For $f \in L^p(0,1)$, we have (restricting $||h||_p \le 2 ||f||_p$)

$$||L_{n}f - f||_{p} \leq ||L_{n}(f - h)||_{p} + ||f - h||_{p} + ||L_{n}h - h||_{p}$$

$$\leq 2 ||f - h||_{p} + Cn^{-1}(||\varphi h''||_{p} + ||h||_{p})$$

$$\leq C(||f - h||_{p} + n^{-1}||\varphi h''||_{p}) + Cn^{-1}||f||_{p}.$$

This implies

$$||L_n f - f||_p \le CK_p(f, n^{-\frac{1}{2}}) + Cn^{-1}||f||_p$$

where

$$K_p(f, t) = \inf\{ \|f - h\|_p + t \|\varphi h''\|_p, \varphi h'' \in L^p(0, 1) \}.$$

Applying the weak equivalent relationship between $K_p(f, t^2)$ and $\omega_{\varphi}(f, t)_p$ (cf. [4, Theorem 2.1.1]), we have

$$||L_n f - f||_p \le C(n^{-1} ||f||_p + \omega_{\varphi}(f, n^{-\frac{1}{2}})_p)$$

which provides the theorem 2.

5 The proof of the theorem 3

The theorem 3 follows from the theorem 1 above and the theorems 5 and 6 in [2].

References

- [1] Becker, M. & Nessel, R. J., A glgbal approximation theorems for Meyer-Konig and Zelles operators Math. Z. 160 (1978), 195—206.
- [2] Chen Wenzhong, On the integral type Meyer-Konig and Zeller operators, Approximation Theory and its Application, Vol.2, 3 (1986), 7—18.
- [3] Duneord, N. & Schwartz, J.T., Linear Operators, Part I, Wiley-Interscience, New York,
- [4] Ditzian, Z. & Totik, V., Moduli of Smoothness, Springer-Verlag, New York, 1987.

积分型Meyer-König-Zeller算子的逼近性质

李落清 徐吉华

(湖北大学数学系,武汉)

摘 要

本文讨论了积分型 Meyer-König-Zeller 算子的逼近度和饱和性质。所得结论表明,积分型 Meyer-König-Zeller 算子和 Kantorovich 型 Meyer-König-Zeller 算子有相同的逼近阶、饱和阶及饱和类。