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Abstract

The paper gives a necessary and sufficient condition that the sectionally stric -
tly monotone continuous mapping that deg( /) =0 on S' exists every order itera-
tive roots, and gets that f exists every order iterative roots is equivalent to can

be embedded in a quasi-semiflow .

Let E be a set, and f, g. E-~ E be mappings. We say that g is the n order
iterative root of f if the equation g"= f hold for every x¢E. Given a set E, f.
E-~E and a positive integer n, can we find g; E—>E such that g"% f? This is
the problem of the existance of iterative root. From end of the 19th Century
one began to research it. So far, many papers have be published. In particular,
[13, (2] obtain very well results.

It is known, for a continuous self mapping f on a topological space,’that f
has every order continuous iterative roots if f can be embedded in a quasi-se-
miflow, It is natural to ask that if f has every order iterative roots, can f be
embedded in a quasi-semiflow? The paper studies the two problems above for
sectionally strictly monotone continuous mappings that deg(f) =0 on §'. We ob-
tain the similar results to [1] and show that existing every order iterative roots
is equivalent to can be embedded in a quasi-semiflow. From these results we
further recognize that there are close connections between the research for inter—
val and for S'.

Let R be the real line and S':{zeCHz\:l} be the

"

unit circle. We define the positive direction of S' as R —-—F——» R
the counterclockwise. p. R—~S' defined by p(x)= & is

a covering mapping. From the theory of algebraic topo- p¢, ¢p
logy, there exists a continuous mapping F,R—>R for eve- s! R S S!

ry continuous mapping f: S'=S' such that the figure above can be exchanged:
F is called a lifting of f.

* Received June, 14, 1989.
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In what follows, f, g indicate continuous self mappings on S'. Flor F) and
G (or G) represent the lifting of f and g respectively. For (4, BJC R, F, , de-
note restricfion of F; R~ R on (A4, B].

_ Lemma | If F is a lifting of f. Then F+ k is alsoa lifting of f for every
integer keZ.

Proof It is easy to prove from the definition.

Lemma 2 If both F and F' are liftings of f, then there exists an integer ke¢Z
such that F=F +k. '

Proof Since po F= fo P= Po F , thus there exist integers k(x)¢Z for xeR
such that F(x)=F(x)+k(x). Let (F~F)(x)=F(x)- F(x). Then F-F is acon-
tinuous mapping. Because (F—- F')(R) is a connected subset of R, and (F- F)
(x)=k{x)eZ, hence there exists an integer 4 jndependenting of x such that (F -
F)(x) =k (for every xeR), i.e., F= F +k,

Lemma 3 If g"= f, then [deg(g)])"=deg(f).

Proof 1If is easy to prove from the theory of algebraic topology.

From Lemma 3 we see that the necessary condition that f exists everyorder
iterative roots is deg( f) =0 or 1. .

Lemma 4 If [(deg(g))"=deg(f) for n. then g"= f if and only if for every G
there exists F such that G"= F.

Proof Let G"= F. Because poG=gop, poF= fop, hence fop=poG'=g'op.
Since p. R »S' is a surjection, thus g"= f.

Conversely, let g"= f and F, be a lifting of f. Since poG=gop, poFy=f=
p, s0 poG"= po F,. From Lemma 2, there exists a integer k¢ Z such that G"= F, +
k. Let F=F,+k. Using Leruma 1, F is also a lifting of f and G"=F.

Lemma 5 Let ¢, . R >R be continuous mappings and "= ¢. Let ¢’, ¥ be
the represensations of ¢, % under the transformation of coordinates. x'=x+a, ) =
y+a, respectively. Then (#)"=¢’.

Proof Since ¢(x) =@ (xX)—a, p(x) =9y (x+a) =y(x) +a, thus G (x) =4y’
PpCx) +a) =i x) +a. Similarly, then ()" (x) =p"(x+a)=@(x)+a=@ (x).

Lemma 5 shows that the relation of f and its iterative root g is indepen-
dent of which point is taken to act as the origin.

In what follows, we suppose deg(f)=0. It is easy to see that the Ilifting
F.R »R of f is a continuous periodic function of period 1, Thus F has maxi-
mum and minimum. Denote M = max(F), m= min(F). We can suppose that f
isn’t a constant mapping. Thus M >m.

Lemma ¢ If g isa n order iterative root of f. Then for every F there is
G such that G"=F. If M~ m<_1, then max(G) - min(G)<.1 and G(R) DF(R); If
M- m>1, then G(R) = F(R).
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Proof By Lemma 4, for every G’ there is F such that (G)"= F .Since deg(f)
=deg(g) =0, thus G(x+k) = G/(x), F(x+ k) = F(x) for every integer k¢ Z, From
Lemma 2, there is an integer k¢Z for F, F such that F= F + k. Now let G= G’
+k, then G"=(G )"+ k= F + k=F.
When M- m<.1. Since G"= F, hence min(G)=< m< M< max(G), and G(R) D
F(CR). Now we are ready 'to prove that max(G)-min(G)<1, Assume this is not
true. Because the period of g is 1, GZ([O,1]):G([min(G),max(G)j)QG([O,1]),,1)
(min(G),max(G)). Then M- m=max(G")-min(G")=max(G) - min(G)>1. This
contradicts M~ m=1, so max{(G)— min(G)=1.
When M-~ m>1. Let D=M - m. Then F(RYC(F(0)- D, F(0)+ D). By G"=F,
hence (m, M1 _(min(G), max(G)), max(G)— min(G)>M—- m=D>]. Thus there is
- Le R such that [ L, L+1]C (min(G), max(G))=G((0,1]), and {(min(G), max(G)]=
G((L, L+1)C G*[0,1). We have further (min(G), max(G)JCG'([0,1)) for i>1.
In particular, [min(G),max(G)JZG" (0,1 = F({0,1)) =(m, M). Thus (min(G), ma
max(G)J=(m,M], i.e., F(R)=G(R). _

Definition | Let f.S'>S' be a continuous mapping on S' If the restriction
F,,, on (0,1) of the lifting F; R—R of [ is sectionally strictly monotone, then f
is called the sectionally strictly monotone mapping. If {e¢R is a extremal point
of F, then p(&)eS' is called the extremal point of f. The maximum and mi-
nimum can be definod sirnil_a‘r]y.N(f) indicate the number of extremal points
of f. Denote N(F)=N(f). N(F) is called the number of extermal points of F
(under the modl equivalence meaning). It is easy to see that for a lifting F
of f, F™is a lifting of f" for cvery me¢Z* Thus N(F™)= N(f™. From [ 1]
we have 0= N(fOSX NSNS el N(fT)Z vnonn

When there exists m such that N(f"y= N(f™"), then let H(f)=min{m]
NCf™=NC™DY,

In the following, the mapping f.S'>S' satisfies deg( f)=0.First we have a
result as follows: .

Proposition | Let f be a sectionally strictly monotone continuous mapping.
If H(f)>1, n>N(Sf), then f « hasn’t n order iterative roots.

Proof Let g be an order iterative root of f. Using Lemma 6, there is G
for every F such that G"=F.

If M— m<1, then Lemma 6 shows that max(G)-min(G)<1 and G(R)DO F(R).
From Lemma 3, the proper coordinate system can be selected such that F(R)C
GR)C(0,13. Thus G,, and F,, are mappings from (0,13 to (0,1], and G5 ,=F; .
This contradicts Theorem 1 of [1]. ‘

If M- m>1, then Lemma 6 shows thai F(R)=G(R). By Lemma 3 we can
assume m=0. So F(R)=G(R)=(0,M]). Let K=min{xe¢Z |x>M}. Then G, , and
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F, , are mappings from (0, k] to (0, k] and G, ,= Fo . Since H(f)>1, then H(Fqy ;)
>1. According to the definition of H(+), we obtain N(f2)>N(f)_. Thus N(g*"
>N(g", N(Gy")>N(G} ,). From Lemma 8 of [1], we have H(G;),k)>n. By the
periods of G and F are 1, hence ‘
0<N(Gqg, )< N(Gg )< +<N(Gg )=N(Fy )= KN(F)
On the other hand, from N(G(':,:)>N(Gé,k)(0£i§ n—1) and the period property
of G, then N(Ggy)— N(Gy ) >K(0<i<n-1). Thus N(F, )= N(Gg ) >nk>
KN(F). This is a contradiction and finishes the proof of the propcsition.

Proposition 1 shows that only H(f)=1 can f have every order iterative
roots.

Lemma 7 If ¢.(a,b)—>(a, b) is a continuous mapping, ‘then R=R,UR,.
Where R and R, denote the nonmonotone points sets of @’ and ¢ respecfively,
and R,={x|p(x)eR,}.

Proof See the Lemma 3" of [1].

Proposition 2 If deg(f)=0, then H(f)=1 if and only if there exist a, beS'
(to assume a<_b) such that f is strictly monotone on (a, 5JC S', and f(S') =
(a, b].

Proof Sufficiency. Let A4, BeR and 0< A<B<1 such that p(A4) =a, p(B) =
b. Then the lifting F of f is strictly monotone on [ A4, B). Since f(S") =(a,b),
we can assume F({0,1))=[A, B). This i1s 0<m= A< B= M<1, It follows that
H(F,,)=1 from Lemma 7 of [1]. Hence H(F) =1, H(f) =1.

Necessity. First we prove M- m<l. If f is constant, the conclusion is evi-
dent. If f isn’t constant, because deg(f) =0, hence N(f)>2, i.e., N(F)>2.
Assume M- m>1. Set p(O)eS' is a monotone point of f. Thus (0,1) contains
the extremal points set of f. We can take A€¢R such that m<CA<{A+1<< M. If
F(xy) =m, F(y,)=M for x,,y,€(0,1), then there exist ¢,, S, betweén X, and y,
such that F(ry)=A, F(S,) = A+1,

When S, >¢,(ry>S,), then F((1,,S,0200,1] (F((Sq,10)22(0,1)).Hence we
can take Ke¢Z' such that - K< m<M<K. So F_,,, is a mapping from [ -k, k]
to (—k, k). From Lemma 7 we know that N(F»)>N(F)+2>N(F). This con-
tradicts H(f)=1, Thus M- m<1. ‘

Assume m=0. Then F;, is a mapping from (0,1] to (0,1]. Set A4=0=min(F),
B=M=max(F). From Lemma 7 of [1], F,, is strictly monotone and so is F on
(A4, B). F((0,1))=(A,B]). Let a= p(A), b= p(B). Then the necessity has be
proved.

According to Proposition 2 and using the same method as [1], we can give
the concept called “characteristic interval” as follows,

Definition 2 If f exists extremal points a, beS' (a<{b) such that f(S")C (a,
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b) and f is strictly monotone on [a,bjCSl, then (a, b} is called a “characte-
ristic interval” of f.

From Proposition 2, there is a lifting F of f such that F;, is a mapping from
[0,1) to (0,1]) and has the characteristic interval [ A, B]). Moreover, it is easy
to see for deg( f)=0 that f has n order iterative roots iff every lifting F has n
order iterative roots. Therefore, if F,, has the n order iterative root G on (0,
1] such that G(0)=G(1), then we can extend G by period 1 to R. It is easy to
see that there is an induced by G continuous mapping g on S! such that poG=
gop. This g is obviously the n order iterative root of f. Thus, to seek the n
order iterative root of f, it is enough to seek the n order iterative root G of F
satisfying G(0) = G(1). However, according to Theorem 4 of [1] and its proof,
to obtain the iterative roof of F, we can seek the iterative root satisiying some
conditions of the restriction F,  of F on its characteristic interval (4, B), and
then extend it to an iterative root of F. Since F((0) = F(l), it is follow that the-
re is the iterative root G of F such that G(0)= G(1) from the method of proving'
therem 4 in [1]. Then as stated above, we can get the iterative root of f.
Hence, for the iterative root of f with deg(f)=0 and H( f)=1, we can write
all conclusions corresponding to the existence theorems of the iterative root in
[1]. Of course some of these conclusions can be got directly by using the con-
clusion on embedded in quasi-semiflows in [3] (for example sufficiency of The-
orem 2). Now we state the main conclusions as follows,

Theorem | If deg(f) =0, f exists the characteristic interval (a, 56)JC S' and
f is strictly decreasing on (a, ], then

(a) If nis an even number, then f doesn’t exist n order iterative roots.
(b) If nis an odd number and that f(a)=b, f(b)=a or that f(a)<b,
f(b)>a hold at the same time, then f exists n order iterative roots.

Theorem 2 If deg(f) =0, then f exists every n order iterative roots if and
only if f exists a characteristic interval (a, bJC S' such that f is strictly imcrea-
sing on (a, b).

Finally, combining Theorem 2 with the results in [3] we obtain.

Theorem 3 If deg(f)=0, then that f exists every » order iterative roots is
equivglent to can be embedded in a quasi-semiflow.
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