Structure of Inner Isomorphic and Inner Non-isomorphic Rings*

Zhou Shifan

(Dept .Math., Suzhou University)

Abstract

An associative ring R is called an inner isomorphic, if any two proper subrings of it are isomorphic. An associative ring R is called an inner nonisomorphic, if the distinct subrings of it are always non-isomorphic. In this paper, we obtain several structure theorems of inner isomorphic and inner non-isomorphic ring, so that totally solve the open problem 81 provided by F.A.Szasz who asks "in which ring are the distinct subrings always non-isomorphic?" [1] additional, we point out that the main results and its proofs in paper [2] are mistaken.

Lemma $I^{[3]}$ If any two finitely generated proper subrings of associative ring R are always isomorphic, then R is isomorphic to one of the following types:

(1)
$$(p^2)/(p^4)$$
; (2) $(p)/(p^3)$; (3) Z_{p^2} ; (4) $Z_{p} \oplus Z_{p^2}$; (5) $(R, +) \subseteq (Q, +)$ and $R^2 = 0$; (6) $(p)/(p^2)$; (7) $(p)/(p^2) \oplus$ $(p)/(p^2)$; (8) $\left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix} \right\} a, b \in Z_{p}$; (9) An extension field

of degree q over Z_p (q is either a prime number or 1).

Where p is a prime number, (Q, +) is a rational number additive group.

Therefore we have the following:

Theorem 1 An associative ring R is an inner isomorphic iff R is isomorphic to one of the following types:

(1)
$$(p^2)/(p^4)$$
; (2) $(p)/(p^3)$; (3) Z_{p^2} ; (4) $Z_{p} \oplus Z_{p}$; (5) (R, +) is an infinite cyclic group, and $R^2 = 0$; (6) $(p)/(p^2)$;

(7)
$$(p)/(p^2) \oplus (p)/(p^2);$$
 (8) $\left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix} | a, b \in \mathbb{Z}_p \right\};$ (9) An

extension field of degree q over Z_p (q is either a prime number or 1).

^{*}Received Nov.20, 1989.

where p is a prime number.

The following are immediate consequences.

Corollary | The liner isomorphic ring is a commutative ring.

Corollary 2 Any two proper subgroups of a commutative group G are always isomorphic iff G is isomorphic to one of the following type:

(1)
$$(Z_p, +);$$
 (2) $(Z_p, +) \oplus (Z_p, +);$ (3) $(Z_{p^2}, +);$

$$(4) (Z, +)$$

where p is a prime number.

According to defintion of inner non-isomorphic ring and through calculation, we get the following:

Lemma 2 The subring of inner non-isomorphic ring an inner non-isomorphic. **Lemma 3** If a is an element of inner non-isomorphic ring R,

- (1) When a is an infinite order element, then a is the algebraic element over integral number ring Z, i.e., a is either a nilpotent element or one of roots of a polynomial $\sum_{i=1}^{n} a_i x^i$ (at least one of a_i ($i=1,\dots,n$) is not multiple of order of a^i).
- (2) When a is a finite order element (let be m, $m \in N$), then a is an algebraic element over residue class ring Z_m , i.e., a is either a nilpotent element or one of roots of a polynomial $\sum_{i=1}^{s} a_i x^i$ over Z_m , (at least one of a_i (i = 1, ..., s) is not multiple of order of a_i).

Lemma 4 If R is an inner non-isomorphic ring, and the additive group (R, +) is torsion-free (R is simple called a torsion-free inner non-isomorphic ring). Then

- (1) R doesn't contain non-zero nilpotent element;
- (2) R contains at most one non-zero idempotent element.

Lemma 5 The torsion-free inner non-isomorphic ring R must be a subring of algebra R' over rational number field Q, and R' is also a torsion-free inninner non-isomorphic ring.

Proof If R is an algebra over Q, then it's obvious. Otherwise, let $R' = \{r/n \mid r \in R, n \in N\}$ (Symbol r/n represents that n(r/n) = r). It is then easily verified that R' is an algebra over Q, and R' is torsion-free. If R' isn't an inner non-isomorphic, then R' contains subring $\langle r \rangle \cong \langle r' \rangle$, and $r \neq r' \langle r \rangle \neq \langle r' \rangle$, therefore, at least one of r and r' doesn't belong to R. Thus there exists mr, $nr' \in R$ (m, n N), such that $\langle kr \rangle \cong \langle kr' \rangle$ (k is the least common multiple of m and n, i.e., $kr = \sum_{i=1}^{s} a_i (kr')^{i-1} = k \sum_{i=1}^{s} a_i r' (kr')^{i-1}$, because

R is torsion-free, $r = \sum_{i=1}^{s} a_i r^2 (kr^2)^{i-1} \in \langle r^2 \rangle$. In the same way, $r^2 \in \langle r \rangle$, thus $\langle r^2 \rangle = \langle r \rangle$, this is a contradication.

Lemma 6 If the torsion-free inner non-isomorphic ring R contains the idompotent element $e \neq 0$, then R has only one non-zero idempotent element, and e is a unit element of R.

Proof Any idempotent element of torsion-free ring must belong to the centre of $R^{\lfloor 4 \rfloor}$, R contains only one non-zero idempotent element e by lemma 4. Therefore, by lemma 5, let torsion-free inner non-isomorphic ring $R' \supseteq R$, such that R' is an algebra over Q, then R' also has only one non-zero idempotent e which belongs to the centre of R'. Thus let R' be direct sum of ideals eR'e and $R_1 = \{r - re \mid r \in R'\}$, because e is a unit element of R', e is also a unit element of R.

• Similarly, we can get:

Lamma 7 Let R be a torsion-free inner non-isomorphic ring, then R is a subring of normal extension field E over Q, and E is an inner non-isomorphic, thus R is a commutative ring without zero divisor.

Theorem 2 If R is a torsion-free ring, then R is inner non-isomorphic iff R is a subring of normal extension field R' over Q, automorphism group G of R' over Q is either a commutative group of a Hamilton group ([5], [6]).

Proof If: By lemma 7, R is a subring of normal extension field R' over Q, and R' is an inner non-isomorphic. Because any subring F of R' ($F \supseteq Q$) must be a subfield, F is a normal extension fiely over Q. Let H be an arbitrary subroup of G over Q and |H| > 1. therefore, let $InvH = \{a \mid a \in R', ha = a, h \in H\}$. Since InvH is a normal extension field over Q. f(x) is a minimum polynomial of a over Q ($\forall a \in InvH$) thus $f(x) = (x - a_i) \cdots (x - a_n)$ ($a_1 = a$) over InvH, f(g(a)) = g(f(a)) = 0. There exist that $g(a) = a_j \in InvH$, i.e. $g(InvH) \subseteq InvH$. So $H(gInvH) = gHg^{-1}gInvH$. i.e., the invarient subfield of conjugate

sub-group gHg^{-1} of H is gInvH. Therefore $gHg^{-1}\subseteq H$, i.e. $H \triangleleft G$.

Only if: If $H \triangleleft G$, $a \in \text{Inv} H$. f(x) is a minimum polynomial of a over Q, $f(x) = (x - a_1) \cdots (x - a_n)$. Because g Inv H is an invarient subfield of $g H g^{-1}$, Inv H = g Inv H.

The following can be verified.

gebra extension of Z_n .

Lamma 8 If additive group (R, +) of associative ring R is a periodical group, then (1) R is direct sum of some ideals R_{p_i} $(p_i \in Z)$, where additive period of R_{p_i} is exponent of prime number p, $I = \{p \mid p \text{ is a prime number, } 0 \neq a \in R, pa = 0\}$, (2) R_{p_i} $(p_i \in Z)$ are all inner non-isomorphic if and only if R is inner non-isomorphic.

Lemma 9 If additive period of every element of inner non-isomorphic ring R is a prime number, then (1) Nilpotent of any nilpotent element $a(a \neq 0)$ of R is either 2 or 3; (2) When nilpotent index of a is 3, then $R/\langle a \rangle$ doesn't contain nilpotent element; (3) When R only contains nilpotent element with index 2, then $R/\langle a \rangle$ doesn't contain nilpotent element; (4) When R contains at most one idempotent element e $(e \neq 0)$, e is a unit element of Re, (5) When R doesn't contain non-zero nilpotent element, R is a normal al-

Combining the lemmas above and verifying, we can obtain the following: Theorem 3 If (R, +) of associative ring R is a p-group and it contains complete subgroup, then R is an inner non-isomorphic if and only if R is isomorphic to one of the four following types:

(1) Zero-ring $Z[p^{\infty}]$; (2) $Z[p^{\infty}] \dotplus [a]$ (\dotplus is direct sum of additive groups, a is a nilpotent element with index 3; [a] is an additive group, |a| = p, $[a] + N_p$ is a ring with order p^2 , $N_p = \langle a^2 \rangle$ is a zero-subring with order p of $Z[p^{\infty}]$). (3) $\{Z[p^{\infty}] + [a]\} \oplus E(\oplus)$ is direct sum of rings, a is described in (2). E is a normal extension over Z_p); (4) $Z[p^{\infty}] \oplus E(E)$ is described in (3)).

Proof If: Since complete subring contained by (R, +) is directsum of Priiferian group $Z[p^{\infty}]$ (1]. Then $(R, +) = \sum Z[p^{\infty}] + R'$, where R' is irreducible group [5]. and $Z[p^{\infty}]$ is zero-ideal of $R^{[1]}$. Because R is an inner non-isomorphic ring, R contains only one $Z[p^{\infty}]$, i.e., $R = Z[p^{\infty}] + R'$. When R' = 0, this proves (1): when $R' \neq 0$, additive period of every non-zero element a of R is p. Otherwise, if additive period of a is $p^n(n>1)$, then $(p^{n-1}a) \cong N_p \subseteq Z[p^{\infty}]$, as $(p^{n-1}a) \neq N_p$ this would contradict the assumption. By lemma 9, R' at most contains a nilpotent subring (a) with nilpotent index 3. Let $(a) = Z_p a + Z_p a^2 (a^3 = 0)$, Since R is an inner non-isomorphic ring, so $(a^2) = Z_p a^2 = N_p$. When $R = Z[p^{\infty}] + [a]$, i.e., Result (2); When $R \supseteq Z[p^{\infty}] + [a]$, $\forall \beta \in R/\{Z[p^{\infty}] + [a]\}$, by

lemma 9, β isn't a nilpotent and is an algebra element over Z_p , thus $R \setminus \{Z[p^{\infty}] + [a]\}$ has non-zero idempotent element e and every element has inverse. Because (R, +) is a primary group and is a bounded group, by Prüfer first theorem⁽⁵⁾ (R', +) = [a] + E, when E is directsum of some cyclic groups with order p, every non-zero element β of E is not nilpotent, and E has non-zero idempotent element, β has inverse $\beta^{-1} \in E$, so E is a division algebra over Z_p and E is a normal extension field over Z_p . As $ea \cdot a = ea = 0$, ea(ae) is not inversible. Let ea = a + ka $(a \in N_p, 0 \le k(p), ea = e \cdot ea = e(a + ka) = 0 + kea$, so ea is either a or 0, when ea = a, $a^2 = ea \cdot a = ea^2 = 0$, this would contradict $a^2 \ne 0$. Thus ea = 0(ae = 0), $\beta a = a\beta = 0$ and $\beta y = y\beta = 0(\beta \in E, y \in Z[p])$. This proves (3); If R' doesn't contain nilpotent element with inde 3, then R' doesn't contain non-zero nilpotent element. As above we can prove (4).

Iff: It can be verified easily.

Lemma 10 If R is an inner non-isomorphic ring, (R, +) is not a p-group and it doesn't contain complete subgroup, then R hasn't infinite height element [5].

Theorem 4 If (R, +) is a p-group without complete subgroup, and R has no non-zero idempotent element. Then R is inner non-isomorphic iff R is isomorphic to one of the following types:

- (1) $(p^k)/(p^{n+k})$ $(k, n \in \mathbb{N}, n \leq 2k)$; (2) $Z_p a + Z_p a^2$ $(a^3 = 0)$;
- (3) $(p^n)/(p^{2n}) + [a]$ $(n \in N, [a])$ is a cyclic group with order p, $\langle a \rangle = Z_{a}a + Z_{a}a^2$, $\langle a^2 \rangle = (p^{2n-1})/(p^{2n})$, $a \cdot p^n = p^n \cdot a = 0$.

Proof If: It can be verified easily;

Only if: By assumption and lemma 10, (R, +) doesn't contain infinite height element, by Prufer second theorem^[5], (R, +) can be decomposed into directsum of cyclic group G with order p^{n_i} .

- (1) If $\forall n_i = 1$, then the character of R is p, by assumption and lemma 8, R only contains nilpotent element with index 2 or 3. By lemma 9, result (1), (2) can be get;
 - .(2) Contrary to (1), let $n_1 > 1$, we can proof that $n_i = 1$ (i > 1).
- 1° If $R = G_1 = \{ka_1 \mid 0 \le k < p^{n_1}\}$, let $a_1^2 = ma_1$, we can get $p \mid m$. Therefore. let $a_1^2 = p^k q a_1$, (p, q) = 1, where $(qa_1) = \langle a_1 \rangle$. Let $a_1^2 = p^k a_1$, we have $R = \langle a_1 \rangle \cong (p^k)/(p^{n_1+k})$, because nilpotent index of a is less than or equal to 3. $n \le 2k$. This proves (1).

 2° If $R \supset G_1$, where additive periodes of every non-zero element of $\sum_{i} G_i$ are all p. By lemma 9, nilpotent index of them are of all 2 or 3. It can be

verified that they doesn't contain nilpotent element with index 2, thus $R = G_1 + G_2 = \{ka_1 \mid 0 \le k < p^{n_1}\} + [a_2]$, and $\langle a_2 \rangle = Z_1 a_2 + Z_2 a_2^2$, $a_2^2 = p^{n_1 - 1} a_1$. By lemma 9, nilpotent inder of a_1 is either 2 or 3.

- (i) If nilpotent index of a_1 is 2, then G_1 is a zero-ring with order p^{n_1} , let $G_1 = (p^{n_1})/(p^{2n_1})$. Result (3) is get;
- (ii) If nilpotent index of a_1 is 3, then $\langle a_1 \rangle = Z_{p^{n_1}} a_1 + Z_{p^m} a_1^2 \subseteq R$ $(m \in N)$. Since $|R| = p^{n_1+1}$, then m = 1 and $R = Z_{p^{n_1}} a_1 + Z_{p^n} a_1^2$, where $\langle p^{n_1-1} a_1 \rangle \cong \langle a_1^2 \rangle$, but $\langle p^{n_1-1} a_1 \rangle \neq \langle a_1^2 \rangle$, controdicts the assumtion.

By lemma 8, we get the following:

Lemma || If character of inner non-isomorphic ring R is a prime number p, and R has a unit element and contains nilpotent element with index 2, then $R = Z_p e + \langle \alpha \rangle$, $e\alpha = \alpha e = \alpha$. $\alpha^2 = 0$.

Lemma 12 The character of inner non-isomorphic ring R with unit element e is a prime number p, and $\exists a \in R$, nilpotent index of a is 3, then $R = Z \cdot e + \langle a \rangle$, ea = ae = a.

Theorem 5 If (R, +) of associative ring is a p-group (p) is a prime number, and it contains non-zero idempotent element, but doesn't contain complete subgroup, then R is an inner non-isomorphic ring iff R is isomorphic to one of types:

- (1) Z_{n^n} $(n \in \mathbb{N}, n > 1)$;
- (2) A normal extension E over Z_p ;
- (3) $Z_p e^{\frac{1}{2}} \langle a \rangle$ ($e^2 = e$, $a^2 = 0$, ea = ae = a);
- (4) $Z_p e^{\frac{1}{2}} \langle a \rangle$ ($e^2 = e$, $a^3 = 0$, $a^2 \neq 0$, ea = ae = a);
- (5) $E \oplus (p^k)/(p^{n-k})$ (E is a normal extension E over Z_n , $n, k \in \mathbb{N}$, n < 2k);
- (6) $Z_{p}e^{+\langle a\rangle}$ ($e^{2}=e$, $a^{2}=0$, ae=0, ea=a);
- (7) $E \oplus \langle a \rangle$ (E is a normal extension over Z_p , $\langle a \rangle = Z_p a + Z_p a^2$, $a^3 = 0$);
- (8) $E \oplus ((p^n)/(p^{2n}) + [a])$ (E is a normal extension over Z_p , $\langle a \rangle = Z_p a + Z_p a^2$, $\langle a^2 \rangle = (p^{2n-1})/(p^{2n})$, $p^n a = a p^n = 0$).

Proof If: We can verify directly.

Only if: (I) If the additive period of non-zero idempotent element e in R is p^n (n>1), then define a direct sum of left ideal $R=Re+R_1$ $(R_1=\{r-re\mid r\in R\})$, we can prove $R_1=0$ by lemma 9, hence R=Re. We can also prove that R contains only one right unit element, thus e is the unit element of R. By Prüfer first theorem [5] we can get that $R \cong \mathbb{Z}_p$, this proves result (1);

(II) If the additive period of non-zero idempotent element e in R is p, then let $R = Re + R_1$ ($R_1 = \{r - re \mid r \in R\}$), as above, we have that R has only one non-zero idempotent element e, and e is a unit element of Re. Therefore Re is

an algebric extension over Z_{pe} .

- (1°) If $R_1 = 0$, then R = eRe.
- ①When R doesn't contain non-zero nilpotent element, by Lemma 9, R is a normal extension over Z_p . This proves result (2);
- ②When R contains non-zero nilpotent element by lemma 9, its nilpotent index is either 2 or 3:
- (i) When R contains only nilpotent with index 2, by Lemma 9 and Lemma 11, we can get result (3);
- (ii) When R contains nilpotent element with index 3, by Lemma 9 and Lemma 12, we can get result (4) directly.
- (2°) If $R_1 \neq 0$, then $R = eRe + R_1$, then the inner non-isomorphic ring eRe must be isomorphic to that in result (2), (3) or (4).

If eRe is isomorphic to result (3) or (4). Then additive period of every non-zero element of R_1 is P by assumption, therefore R_1 contains non-zero idempotent element, it's impossible, thus eRe can only be a normal extension E over Z_n .

By assumotion and Theorem 4, we have one of following:

- 1) R_1 is isomorphic to $(p^k)/(p^{n+k})$ $(k, n \in \mathbb{N}, n \leq 2k)$;
- 2) R_1 is isomorphic to $Z_p a + Z_p a^2$ ($a^3 = 0$);
- 3) R_1 is isomorphic to $(p^n)/(p^{2n})+[a]$ $(n \in N, [a])$ is a cyclic group with order p, $\langle a \rangle = Z_p a + Z_p a^2$, $\langle a^2 \rangle = (p^{2n-1})/(p^{2n})$, $a p^n = p^n a = 0$.

When 1), if $ep^k = p^k e = 0$ and n > 1, this proves result (5); if n = 1, by Lemma 11 we can prove result (6);

When 2), we have $R \cong E \dotplus Z_p a \dotplus Z_p a^2$ $(a^3 = 0)$, since ae = 0, so $(ea)^2 = 0$, thus ea = 0. This proves result (7);

When 3), if $R = E \bigoplus ((p^n)/(p^{2n}) + [a])$, we can prove result (8). As above we have

Theorem 6 If the additive group (R, +) of non-zero associative ring R is a cyclic group, i.e., R is a direct sum of some ideals R_p $(p \in 1)$, $(R_p = \{a \mid a \in R, \exists n \in N, p^n a = 0\})$, $I = \{p \mid p \text{ is a prime number, } \exists 0 \neq a \in R, pa = 0\})$, then R is an inner non-isomorphic ring iff every, ideal R_p $(p \in I)$ of R is isomorphic to one of the following 15 types:

- (I) Type (1) to (4) in Theorem 3;
- (\prod) Tppe (1) to (3) in Theorem 4;

We can calculate directly, and get

Lemma 13 If R is an inner non-isomorphic ring, then

- (1) $R_0 = \{a \mid a \in R, \exists n \in N, na = 0\} \le R$, and when $R_0 \neq 0$, R_0 has the structure in Theorem 6,
- (2). When $R \neq R_0$, $\forall a \in R \setminus R_0$, $\langle a \rangle$ is a torsion-free subring, then R/R_0 has at most one non-zero idempotent element.

Similary, we can prove

Theorem 7 If R is an inner non-isomorphic ring, (R, +) has a torsion-free complete subgroup. Then $R \cong R_0 \oplus E$, where E is a normal extension over Q, and every subring of E containing Q is a normal extension over Q, $R_0 = \{r \mid r \in R, \exists n \in N, nr = 0\}$ is an inner non-isomorphic ring without non-zero idempotent element, therefore $R_0 \cong \sum_{p \in I} R_p$ ($R_p = \{a \mid a \in R, \exists n \in N, pa = 0\}$), $I = \{p \mid p \text{ is a prime number, } \exists 0 \neq a \in R, pa = 0\}$, and R_p must be isomorphic to one of 15 types in theorem 6.

Additionally, we point out that the main results and its proofs in paper [2] are mistaken.

References

- [1] Szasz F.A., Radicals of Rings, Chichester New York, Brisbane, Toroto, (1981), 210, 43.
- [2] Zhang Changqian, J. Math Res. and Exposition, 8(2) (1988). 163~169 (in chinese).
- [3] Zhou Shifan, Wu Zhixiang, J.Suzhou University, 4(1988).477~482.
- [4] Herstain I.N., Rings with Involution, University of chicago Press, (1976).4.
- [5] Kurosh A. G., The Theory of Groups, New York: Chelsea Publishing Company, (1960).
- [6] Jacobson N., Structure of Rings, AMS. Call. Publ., Vol 37(1956): 217
- [7] Hall M., The Theory of Groups, NewYork, Macmillan Company, (1959).

内同构环与内异环的结构

周十藩

(苏州大学数学系) -

摘 要:

所有真子环都同构的结合环, 称为内同构环, 任两不同的子环都不同构的结合环, 称为内异环. 本文目的是给出内同构环与内异环的一些结构定理, 从而基本上解决了Szasz F. A. 提出的问题 81; 怎样的结合环, 它的不同子环总不同构?