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Abstract

An associative ring 'R is called an inner isomorphic, if any two proper sub-
rings of it are isomorphic, An associative ring R is called an inner nonisomor-
phic, if the distinct subrings of it are always non-isomorphic. In this paper,
we obtain several structure theorems of inner isomorphic anq inner non-isomor-
phic ring, so that totally solve the open problem 81 provided by F.A.Szasz
who asks “in which ring are the distinct subrings always non-isomorphic?” [1]
additional, we point out that the main results and its proofs in paper [ 2 ] are

mistaken.

Lemma | £31 y¢ any two finitely generated proper subrings of associative
ring R are always isomorphic, then R is isomorphic to one of the following
types:

(L) @Y (2) (p)/(phs  (3)Z35 (4) Z2fZ;  (5)
(R, +)C(Q, +)and R*=0;  (6) P/ (T) (»)/GHD

* 0 a b
(p)/(p?; (8) {| 0 0 a i| ta, b€ Z ,}s (9) An extension field
0 0 0

of degree q over Z, (¢ is either a prime number or 1).
Where p is a prime number, (Q, +) is a rational number additive group.
Therefore we have the following,
Theorem ] An associative ring R is an inner isomorphic iff R is isomor-
phic to one of the following types;’
(1) P/ (p*s (2) (»/ P (3) Z (4) 2/Hz,; (5)
(R, +) is an infinite cyclic group, and R%*= Q; (6) (p)/(phH;

0 a b -
(7) (D/PHB ) /(2D (8) {{ 0 o a} la,be Z,}; (9) An
0 0 0

extension field of degree ¢ over Z, (g is either a prime number or 1).
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where p is a prime number, o
The following are immediate consequ:e"nces.
Corollary | The Inner isomorphic fing is a commutative ring.
Corollary 2 Any two proper subgroups of a commutative group G are al-
ways isomorphic iff G is isomorpnic to one of the following type.
(1) (Z,, +); (2) (Z,, £)D(Z,, +);  (3) (Zp, +);
(4) (z, *+)
where p is a prime number .
According to defintion of inner non-isomorphic ring and through calcula-
tion, we get the following.
Lemma 2 The subring of inner non-isomorphic ring aninner non-isomorphic.
Lemma 3 If ¢ is an element of inner non-isomorphic fing R,
(1) When a is an infinite order _element, then a is the algebraic element

over integral number ring Z, i.e.,a is either a nilpotent element or one of
n . . -
roots of a polynomial Z‘ia,x" (at least one of a; (i=1,++, n) is not multiple
i= :

of order of a'). _ .
(2) When g is a finite order element (let be m, me& N), then a is an

algebraic element over residue class ring Z,,i.e.,q is either a nilpotent element

§ .
or one of roots of a polynomial ) ax over Z,, (at least one of a; (/i=1,
i=1

see, §) is not multiple of order of a;).

Lemma 4 If R is an inner non—isomofphic ring, and the additive group
(R, +) is torsion-free (R is simple called a torsion-free inner non-isomor-—
phic ring). Then

(1) R doesn’t contain non-zero nilpotent element; ’

(2) R contains at most one non-zero idempotent element .

Lemma § The torsion—freé inner non-isomorphic ring R must be a subring
of algebra R’ over rational number field Q, and R’ is also a torsion-free inn’
‘inner non- isomorphic ring, , ‘

Proof If R is an algebra over Q, then it’s obvious, Otherwise, let R’ =

{r/n|réR, n €N} (Symbol ri/n represents that n(r/n) =r). It is then easily
verified that R’ is an algebra over Q, and R’ is torsion-free. If R’ isn’t an
" inner non-isomorphic, £hen R’ contains subring {(rd>={r’ Y, and r£r (r)+£
(r’), therefore, at least one of r and r’ doesn’t belong to R . Thus
there exists mr, nr’ € R (m, n N), such that <kr>é‘<kr’> (k is the least

T s . s P
common multiple of m and n),i.e., kr= :ai(kr’ Y=k S a’ (kr’ ), because
. = i=1
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5 .
R is torsion-free, r = 3 as' (kr’)''€<r’)>. In the same way, r €(r), thus
i=1 -

¢(r’y=¢r>. this is a contradication.

Lerama 6 If the” torsion-free inner non-isomorphic ring R con‘tains the id'o—
mpotent element es~(, then R has only one non-zero idempotent element, and
e is a unit element of R.

Proof Any idempotent element of torsion-free ring must belong to the
centre of R[“, R contains only one non-zero idempotent element ¢ by lemma
4. Therefore, by lemma 5, let torsion-free inner non-isomorphic ring R’ DR,
s_uch that R’is an algebra over Q, then R’ also has only one non-zero idempo-
tent e which belongs to the centre of R’ . Thus let R’ be direct sum of idea-
Is eR’e and R,={r-re|[r€R’}, because e is a unit element of R’, e is also a
unit element of ‘R.

If ‘R,#0, then by lemma 3, a non-zero element a of R is an algebra ele-
ment over Z, i.e., ,_jZla,an. according to lemma 4, a is not nilpotent, thus
at least two elements of g;, <., g, are non-zero element, let a,=+-=a,-, =0,

n

a,#0 such that aa*= - ad, i.e,a*= nz a;/aa'=a*"'gla) (g(a) = i: a;/ax
: i 2F+1

i=k+1 i=k+1
@7y, thus g*(a)-a* is a non-zero idempotent element of R’, i.e.,g*a)-a*=

"e:().

=e, and a*=a’e. By means of definition of direct sum, we have a“=a
this is contrary to the assumption,
« Similarly, we can get:

Lamma 7 Let 'R be a torsion-free inner non-isomorphic ring, then R is a
subring of normal extension field E over @, and E is an inner non#isomorphic,
thus R is a commutative ring without zero divisor,

Theorem 2 If R is a torsion-free ring, then R is inner non-isomorphic
iff R is a subring of normal extension field R’ over Q, automorphism group G
of R over Q is either a commutative group of a Hamilton group ([ 5], [6]).

Proof If. By lemma 7, R is a subring of normal extension field R’ over
Q, and R’ is an inner non-isomorphic. Because any subring F of R* (F2Q)
must be a subfield, F is a normal extension fiely over Q, Let H be an arbitr-
ary subroup of G over Q and |H |>1. therefore, let InvH ={a [a€ R’, ha=a,
heH). Since InvH is a normal extension field over Q. f(x) is a minimum
polynomial of a over Q (yae€ InvH) thus f(x)=(x—a;)e(x—a,) (a =a) over
InvH, f(g(a))=g(f(a))=0. There exist that g(a) =a;€InvH, i.e.g(InvH)C
InvH, So H(glnvH) =gHg¥gInvH. i.e,the invarient subfield of conjugate
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sub-group gHg 'of H is gluvH. Therefore gHg 'CH, i.e .H<]G,

Only if, If H<G, a€lInvH . f(x) is a minimum polynomial of a over Q,
f(x)=(x-a;)(x—a, . Because gInvH is an invarient subfield of gHg™, InvH =
-glnvH . .

The following can be verified.

Lamma 8 If additive group (R, +) of associative ring R is a periodical
group, then (1) R is direct sumof some ideals R, \(pie Z), where additive
period of RP, is exponent of prime number p, I:' {p {p is a prime number,
0F£a€ R, pa=0}, (2) RP,- (p,€ Z) are all inner non-isomorphic if and only
if R is inner non-isomorphic,

Lemma 9 If additive period of every element of inner non-isomorphic
ring R is a prime number, then (1) Nilpotent of any nilpotent element a(a=*~
0) of R is either 2 or 3; (2) When nilpotent index of a is 3, then R/ a)
doesn’t contain nilpotent element; ( 3) When 'R only contains nilpotent element
with index 2, then R\{a) doesn’t contain nilpotent element; (4 ) When R con-
tains at most-one idempotent element ¢ (es=()), e is a unit element of Re,

(5) When R doesn’t contain non-zero nilpotent element, R is a normal al-
gebra extension of Z,. '

Combining the lemmas above and verifying, we can obtain the following,

Theorem 3 If (R, +) of associative ring R is a p-group and it contains
complete subgroup, then R is an inner non-isomorphic if and only if R is iso-
morphic to one of the four following types,

(1) Zero-ring Z[p™); (2) Z[p®1+[a] (+is direct sum of additive giou-
ps, a is a nilpotent element with index 3; [aJis an additive group, |a |=p,
[al]+N,is a ring with order p?, N,,=<a2> is a zero-subring with order p of
ZIp*DH. (3) {Z[P")+[al}DE(D -is directsum of rings, -a is described in
(2). E is a normal extension over Z,); (4) Z[p”IPE(E is described in
(3.

Proof If; Since complete subring contained by (R, +) is directsum of
Priiferian group Z[p™] (1]. Then (R, +)=LZ[p"]+ R, where R’ is irredu-
cible group [ 57]. and Z[p™] is zero-ideal of g1 . Because R is an inner non-
isomorphic ring, R contains only one Z[p~], i.e,R=Z[p®]1+R . When R =0,
this prbves (1), when R+, additive period of every non-zero element a of
R is p. Otherwise, if additive period of ¢ is p"(n>»D), then (p";‘a>ngQZ[p°°],
as <p"_'a)$N,, this would contradict the assumption. By lemma 9, R’ at most
contains a nilpotent subring <{a) with nilpotent index ‘3. Let (a) =Z,a +Z g° (a}
=0), Since R is an inner non-isomorphic ring, so (a? :Z[p2:Np. When R=
Z[p*]1+[al, i.e,Result (2); WhenRDZ[p®1+[al, VBER/{Z[p®]+[al}, by
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lemma 9, f isn’t a nilpotent and is an algebra element over Z,, thus R\
{Z[p*]+[a]} has non-zero idempotent element ¢ and every element has in-
verse. Because (R, + ) is a primary group and is a bounded group, by Priifer
first theorem®?®’ (R’, +)=[a) +E, when E is directsum of some cyclic
groups with order p, every non-zero element § of E is not nilpotent, and E
has non-zero idempotent element, S has inverse '€ E, so E is a division alge-
bra over Z, and E is a normal extension field over Z,, As eqa-a=ea =0,
ea(ae) is not inversible. Let ea =a+ka (a€ N, 0<k (p), ea=e-ea =e(a+ ka)
=0+kea,so ea is either a or (, when ea=a, a’=ea+a=ea’*=0, this would con-
tradict a’#0. Thus ea=0(ae=0), Ba=aB =0 and By =pB=0(B€EE, yeZ[p
Z[p*]). This proves (3); If R doesn’t contain nilpotent element with inde
3, then R’ doesn’t contain non-zero nilpotent element, As above we can
prove (4),

Iff, It can be verified easily,

Lemma |0 If R is an inner non-isomorphic ring, (R, +) is not a p-group
and it doesn’t contain complete subgroup, then R hasn’t infinite height ele-
mentt®! |

Theorem 4 If (R, +) is a p-group without complete subgroup, and R has
no non-zero idempotent element. Then R is inner non-isomorphic iff R is
isomorphic to one of the following types.

(1) "/(p"™ (k,ne N, n<2k)s (2) Zya+Za® (a*=0);
(3) (p")./(pz")'i-[a] (ne N, [a] is a cyclic group with order p, <a) =
Za+Zp% @ =" /™), a-pt=pa=0).
Proof 1If; It can be verified easily;
Only if, By aSsumption and lemma 10, (R, +) doesn’t contain infinite height
element, by Prufer second theorem[“, (R, +) can be decomposed into dir-
ectsum of cyclic group G with order p".
' (1) If vn,=1, then the character of R is p, by assumption and lemma
8, R only contains nilpotent element with index 2 or 3. By lemma 9, result
(1), (2) can be get; _

(2) Contrary to (1), let n,> 1, we can proof that n,=1 (>1).

1° If R=G,={ka, [0<k<p™}, let a?=ma,, we can get p|m. Therefore.
let af:p"qa,, (p, @) =1, where (ga,) =(a,), Let alzzp"a,, we have R={(a) =

(p")/(p"‘+k), because nilpotent index of a is less than or equal to 3. n<2k.
This proves (1).
2° If RDG,, where additive periodes of every non-zero element of 3G,
i

are all p. By lemma 9, nilpotent index of them are of all 2 or 3. It can be
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verified that they doesn’t contain nilpotent element with index 2, thus R=G,+
G, = {ka, |O.<k<p"’} %[a,],l and (a) =Zpg,+Znpal, a§=-p’f'_1a,, By lemma 9, nilpo-
tent inder of a, is either 2 or 3. L

(i) If mlpotem index of a, is 2, then G,is a zero- rmg with order p '
let Gi= (p" )/(p . Result (3) is get; , :

(i) If nllpotent index of a, is 3, then (ea,) = Z,,,a,+Z ,,.a2CR (meN).
Slnce IRI— +1, then m=1 and R= Z,.la,+Z,,a,, whore (p - a,)CO(a,) but
" a:ﬁﬁ(a;), controdicts the assumtlon

By lemma 8, we get the following,

l

Lemma [| If character of inner non-isomorphic ring ‘R is a. prifhe num‘ber
D and R has a unit element and contains nilpotent element with mdex 2, then
R=Z,e+{a), ea=ae=a. a*= Q. ‘

Lemma |2 The character of inner non-isomorphic ring R with unit éle—
ment e is a prime number .- p, and e € R, nilpotent index of a is 3, then R=
Ze+t+ia), ea=ae =a,. . _

Theorem 5 If (R, +) of associative ring is a p-group (p is a prime num-
‘ber), and it contains non-zero. idempotent element , but doesn’t contain
complete subgroup, then ‘R is an inner non-isomorphic ring iff R is isomorphic
to one of types.

(1) Zp,. (neN, n>1);

(2) !4 normal extension E over Z,;

(38) Z,e+<(a) (el=e, 2= 0, ea=ae=a);

(4) Z,e+¢a) (e*=e, a’=0,.a*+(, ea =ae=a);

(5) EBD (Y /(p"™ (E is a normal extension E over Z,, n, ke N, n<z2k);

(6) ZeHa) (e*=e, a’=0, ae= 0, ea =a); |

(7) E@(a) (E is a normal extension over z,, (& =Z,,d“_,+~Z.,,az, a’= 0);

(8) ED(p™/(p™) +[al) (E is a normal extension over Z,, <{a) =Za+
Z,a% (ad=(p" N /(p™), pPa=a p"=0).

Proof If; We can verify directly.

Only if, (I) If the additive period of non-zero idempotent element ¢ in R
is p” ’(n>1),then defineadirectsum of left ideal ‘R=Re +R, (R ={r-re FeR)}),
we can prove R, =0 by lemma 9, hence R=Re. We can also prove that R
contains only one right unit element, - thus e is thevunit element of R, By Prii-
fer first theorem "*? ye can get that RxZ,, this proves result (1);

V (II) If the additive period of non-zero idempotent element ein R is p, then
let R=Re+R, (R,={r~re A|r€R}), as above, we have that R has only one non-
zero idempotent element e,.and e is a unit element of Re, Therefore Re is
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an algebric extension over Z,e.

(1°) If R =9, then R =eRe.

(OWhen R doesn’t contain non-zero nilpotent element , by Lemma 9,
Ris a normal extension over Z,. This proves result (2 );

"@When R contains noﬁ—zero nilpotent element by lemma 9, its nilpotent

index is either 2 or 3.

(i) When R contains only nilpotent with index 2, by Lemma 9 and
Lemma 11, we can get result ( 3); :

(ii) When R con'tains nilpotent element with index 3, by Lemma 9 and
lemma 12, we can get result (4) directly.

(2°) If R #0, “then 'R=eRe +R,, - then the inner non-isomorphic ring eRe
must be isomorphic to that in result (2), (3) or (4).

If eRe is isomorphic to ‘resullt (3) or (4).Then additive period of every
non-zero element oflR1 is p by assumption, therefore 'R, contains non-
zero idempotent element, it’s impossible, thus eRe can only be a normal ex-
tension E over Z,, '

bBy assumotion and Theorem 4, we have one of following;

1) R, is isomorphic to (p*) /(p"""‘) (k,ne N, n<2k);

2) R, is isomorphic to Z;,ai-Z,,al2 (a®=0); "

3) R, is isomorphic to (p"y/(p*™ +[a] (n€ N, [a] is a cyclic group with
order p, <a) =Z,a+Z,a*, <a®=(p™")/(p™), ap"=p"a=0).

When 1), if ep*=p*e=¢ and n>1; this proves result (5); if n=1, by
Lemma 11 we can prove result (6);

When 2), we have Rg/_;aE-'prai—ZpaZ (a’= 0), since ae= 0, so (ea)?=0,
‘th,us'ea =0. This proves result ( 7);

When 3), if R=E@((p"')/(p2")5r[a]),_we can prove result (8).

As above we have _

Theorém 6 If the additive group (R, +) of non-zero associative ring 'R is
a cyclic group, i.e,R is a directsum of some ideals R, (p€1), (R,={a |a €'R,
IneEN, p"a'= 0}, I={p lp is a prime number, 307#a€ R, pa=01}), then R is
an inner'non-isomorphic ring iff every, ideal R, (pel) of R is isomorphic to
one of the following 15 types: : | '

(I) Type (1) to (4) in Theorem 3;

(1) Tppe (1) to (3) in Theorem 4

() Type (1) to (8) in Theorem 5.

We can calculate directly, and get

Lemma |3 If R is an inner non-isomorphic ring, then

}

— 341 —



(1) Ry={ale€eR IneN, na=0}<IR, and when Ry#0, R, has the structu-

re in Theorem 6;
(2).When R#R,, Yac R\R,, (a) is a torsion-free subring, then R/R, has

at most one non-zero idempotent element, |

Similary, we can prove

Theorem '7 If R is an inner non-isomorphic ring, (R, +) has a torsion-
free complete subgroup. Then R RfDE, where E is a normal extension over
0, and every subring of E containing Q is a normal extension over Q, Ry =
{r ]re R, 3n€ N, nr= 0} is an inner non-isomorphic ring without non-zero

' @
idempotent element, therefore Roy2 3" R, (R,={a [a€R, 3ne N, pa=0}, [=p|p
pe 1

is a prime number, d0£a€ 'R, pa= 0}, and R, must be isomorphic to one of
15 types in theorem 6.
Additionally, we point out that the main results and its proofs in paper [2]

are mistaken,
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