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Abstract

We establish the interpolation schemes by the space of C' bivariate piece -
wise quartic polynomials defined on a much more general tiangulation of a conn
nected polygonal domain £ . These schemes demand the location value and
partial derivatives of the function f on the grid points and some other points
of triangulation 4 of £. At last, we describe the reccurent computing method

for interpolant splines.

§ 1| Introduction

Let QCR’ be a connected polygonal domain, denote by 4 a triangulation of
of £ and suppose that triangles of 4 are labeled T(l)a; v, T, Given 0<r<d,
we consider the linear ‘space of bivariate splines by

Si(A)={seC" (D), s| ;€ P;, i=1,,N},
where P, is a (d+1) (d+2)/2 dimensional linear space of polynomials of total
degree d.

Our aim here is to construct an interpolant S, concerning function f€C'(R)
from S (A).

Given a triangulation A of a connected polynogal domain Q. Let

~ V,=number of interior vertices,
V ,=number of boundary vertices,
V =total number of vertices,
- E,=number of interior edges,
E =numbér of boundary edges,
E = number of edges,
N =number of tiangles .
It is well known that
Eg=Vyg, E,;=3V,+Vy=3, N=2V,+V,y-2,
~ According to (4 3, if an interior vertex has only two edges with different
slopes attached to it, we call it a singular vertex, then we have
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Theorem Let o denote the number of singular vertices in A, then dim

S,(A) =3V ,+4V + E+0 =6V, +6V,~3+0,
2 Some Fundamental Concepts

For the need of application , we sketch  B-net techniques here . Each
spline s€ S}(A) can be written in the form
S(x)=SP(x) for xeT’, I=1,+,N, (2.1)
where S(”‘is a polynomial of degree d . Throughout this paper, a superscript

. 1)
in brackets refers to a specific triangle 7€ A. Each the polynomials § can

be written as

5 _ a0 d) ipipk
S (X)_i+§k=dcf’* Tk B, 838, (2.2)
where ﬁ,=ﬂ,(”, i=1,2,3, are the barycentric coordinates (with respect to the
triagle T’) of the point x . These are defined by the equations
3 3 ~
x=2.8Y, and 2,3,.:1, (2.3)
i=1 i=1
where V,=Vf.“ =V, (T”)), i=1,2,3, denote the vertices of the triangle T (labe-
led counterclockwise) .
With each Bezier-ordinate C}‘k’) we associate a domain point
D) D H
v+ jV, +kV
P = 7 : itj+tk=d. (2.4)
The set of all domain points is denoted by 4(A).On each triangle T of A

there are precisely ( ;2) points of % ,;(A) spaced uniformly over T. we
identify the Bezier-ordinates C,’), on common edges of triangles, This forces
the continuity of a piecewise polynomial function. A given B-net uniquely
defines a function in Sg(A) and vice versa., In dealing with Bezier ordinates,
we always assume that the subscripts satisfy i+ j+k=d.
Given a vertex p€A, we define the p-th ring around » to be the set
R, (») ={P €eTeA, p=p,(T)}. (2.5)

d-p,j,k
A related concept is the disk of order p around p or p-disk D, (») defined by
. FJ
D,(»)={P,,¢TeA,p=V (T), i>d-p) = L_JOR,.(Z)) . (2.6)

(1)

Consider a triangulation A consisting of 2 triangles, triangle T with verti-

ces p,,0,,0;, and triangle T ® with vertices vy, 0, v, In this instance, itis

2)

convenient to label the vertices of T ° clockwise. We are concerned with the

smoothness of a piecewise polynomial function across the common edge z,0,.
It turns out‘®’that S e S,(A) iff
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Cil1=6,CY b,Clro ot CY, it i=d-1 (2.7)

i+1,j, 0 i, j+1,0
where b,,b,, and b, are the barycetric coordinates of », with respect to TV,
The equations (2.7) are crucial in what follows. From now on, we will refer
to them simply as the smoothness conditions . '
Definition 2.] Let A be a triangulation, T be boundary of 2.A is stan-
dard if for each triangle T of A, T(\I'=¢ or {v} or {e}. Throughout this paper

we suppose that A is standard.

3 Interpolation Scheme T

" Definition 3.1 Let £ be a connected polygonal domain, A be a triangula-
tion of £. If for each interior point of A the deg(y) is odd,i.e.,there are
odd edges attached to the interior » then we refer A to an odd degree triangu-
lation of £,

Corollary 3.2 Let A be an odd degree triangulation of £, then

dim S, (A) =3V ,+ 4V, +E=3V +E +E. (3.1)

Definition 3.3 Let A be a triangulation of 2, denote by I' the boundary
of Q.Sﬁppose that Te€¢ A is a triangle, T is refered as vertex-boundary triangle
if T(\I' =u belonging to the vertex set of A and T is refered as edge-boundary
triangle if T\ =e belonging to the edge set of A,

Now we suppose that A is an odd degree triangulation of .

Interpolation scheme 1 ,

Given feC'(R), we require to find a spline function s; from S4(A) such
that

(i) For each vertex v of A, s,(») = f(»), —g;—s/(v) :7dx¥f(v) and %y—sf(v) =
Tf(z;) . . .
(ii) For each edge e=sp, of A, 5 ,( 2e) f( e) where 5e =y (0, +v,),
‘t.e.,the midqoint of edge e.

(iii) Let e,,e,,++, e, be all boundary edges of A labeled counterclock-
B 03 a
S o)+ o) =L L)

. . . . 00
wise. Picking arbitraryly a boundary. edge e =0,
L2 ds, 2 1 J ds
Dz) and —d';l"(?,o*'?vo) f(— +?2)- for any iiio—l, igs 7#(%?,)=
3f

E.(?e")? where n and n, are the normal vectors of edges e, and e, respec-

tively, pointing to inner domain L.
It is obvious that the number of interpolatory conditions is equal to dim
Sl(A) according to the Corollary 3.2.

Theorem 3.4 The spline interpolant s, of f v1th respect -to the interpola-
- tion scheme ] on S (A) is existent and unique.
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In order to prove Theorem 3.4, we need the following two lemmas

Lemma 3.5 Let A be an odd degree triangulation consistion of only one
interior vertex », denote by 2,,2,,,4, (n odd integer) the all boundary verti-
ces of A (cf.Figure 3.1). then the following spline interpolant s in LI(A) is
existent and unique, while giving the values s(p), %(z;) s 3 (p) and s(p,)
(i=1,2,3m.

Proof Let A be illustrated in Figure 3.1, sES (A) and s’ s B-nets are also
showed 'in Figure. Suppose that

5@ =2 () = () =5(s) =0, (1=1,2, 0. (3. 2)
. Ix dy- y

Then we can see that a,b,,c, =0(i=1,2, »+,n). Second , from Lemma 3 oft3],
we have all of the d, s are zero. ’
In figure 3.2,let T be a triangle with vertices »,(x,,y,), i=1,2,3,labeled

1 1 1
counterclockwise, A= X, X, , the algebraic area of T,
ooy, ¥
— i9) 1k
P4(X) = Z C“,‘T'-—"—k—'v{llzls

i+j+k=4
be a quartic polynomial defined on T, where 4, (i=1,2,3) are the barycentric
coordinates with the vertices o, (iﬁ 1,2,3) of T and denote by n=(a,B) the
unit normal vector of the edge »,», pointing to the inner domain of 7. Denote
'”102|=J(XZ—X1) 2+ (yz—)’l)2 .

Vs
“,2
Vs
Figure 3.1 Figure 3.2
Lemma 3.6 (i) a=(y,—y)/|ow,|, B=(x,~x)/|v,04.
.. JP, _4 31 iq/
(i) 5~ |43=0—7E(a(y2 yy) +B(xy—x,)) HZ} 3C;+1,,,o Nt AjA]
+ta(y,—p)+B(x;—xp)) X CH!*IOTT!_” 2
l+j
+(@(y ) +Bx,=x)) T C,—2balaly, (3.3)
itj=3 ijl ,
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: P :
In particular, when P,(»,) :7;; (o)) =—5—;—(u,) =0 (=1,2), and

P, (—%—v,‘vz) =0, (3.4)
then dP ‘I) o '
im0 T 127 (Co AL A, C 4D (3.5)

Proof It is obvious.

The proof of Theorem 3.4, The theorem is true iff s=(0 while the homoge-
neous interpolation conditions given. First, suppose that the interpolation condit
tions are homogeneous, then for every point », we know the all of Bezier ordi-

s s
nates of s, on D,(p) are zero for s,(2) ==-—d§—(v) =——d-}f—(v) =0. For every edge e
of A, we can specify the Bezier ordinate of s, on the point -;"e be zero because

sf(—%-e)=0. Now we can see that for. any triangle T of A, all of the Bezier
ordinates of s, on all edges of T are zero.

Second, for an interior vertex v, let us consider D,(y), denote by A the
new triangulation of domain cov [D,(#) ]’, then all of Bezier ordinates of s,
S4(A) on D,(») determine a spline s, €S;(As) such that all of the Bezier odin-

)
nates of s, same as that of s, on B,(»). Thus we have 54, () =_%L (p) =
y
ds
df; ()=0 and s, (»p =0 for any boundary vertex of A, by first part of
proof . According to Lemma 3.5, sf,EO‘ Hence, if the triangle T of A is neither

edge-boundary triangle nor vertex-boundary triangle, then s/|,==0,

Third, from the above two parts of proof, if T is vertex-boundary (an
edge -boundary) triangle, then there is only one (are two) Bezier ordinate(s)
remaining not to be specified. Let p,,4,, «+,v5, be all of the boundary vertices
of A.No loss generality, Let i;=1 and T(”ﬂr=e,0, so TV
triangle « Now we label all of edge-boundary and vertex-boundary triangles

1) ) 1)

H : G, 2 G- j
counterclockwise, denoting by 7V, TV, ce [ T)/V, T jeee TV TV fawe 1000,

is an edge-boundary

T(”,---, T(E')-, TE(:: TN T;jf') those triangles, where T with lowerscript is the
‘vertex-boundary triangle .

1. It turns out that the two remaining Bezier orcinates of 5, on T are
Zero accordihg to the irterpolation conditions (iii) and Lemma 3,6.

2’ . If j,=0, then T? and TV are neighboring triangles. By smoothness
cohdition (2.7) and the interpolation conditions (iii) and Lemma 3. 6, we have

S| @=0.If j,#0 the remaining Bezier ordinates of s, on T|", Cq)" (1<m<
J1) are also zero by the smoothneoss conditions on neighboring eqge, step by
step .

3’. We have confirmed the all of Bezier ordinates of s, on all 7,” and T
Tw (i<E,—1) are zero in 2’. For TES | if /'E’= 0, then by the smoothness
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conditions .on the common edge of T %’ and T, C\%’ =0, and by the smooth-

ness condition on the common edge of T(:'_'l“, C(zf;) = 0. If jEJtO, similar to 2/,
we can see sf‘T<£>>0, hence, the two Bezier ordinates of s, on T are zero.

And now, wé can conclude that s,=0 on 2.

Denote s,; f|>s ¢ S'(A) the interpolation operator with respect to the inter-
polation scheme (1), then

Corollary 3.7 VP€ll (), s,(p)=p ,

i .e., the interpolation operator s, has algebraic preciseness of 4.
4 . Interpolation scheme (1)

In the section 3, we discuss an interpolation scheme on an odd degree
triangulation A of £2. To deal with the interpolation problems on an arbitrary
triangulation A of {,we want to change A to a new odd deéree triangulation
A* of Q.Let k be total number of vertices of A, the procedure consists of
the following .

‘ 1*. Choice an edge-boundary triangle T, of A as the initial triangulation
Ay .k =0.

2*. Arbitrarily choice a vertex from the vertex set of AN\A, such that p
neighbors with some vertices »,,v,, *,0,, (m;>1) (labeled countercloc-
kwise) (Note; Obviously, the triangle v 2,5, ;, and the triangle py,, 0, are
neighboring triangles of A). Calculate the degy, (i=1,2,++,m,) in A,
when m, =2, goto 5*,i=2.

3*. If deg », be even, then when i<m,,i=i+1 goto 3* and when i=m,
goto 5*;

If deg », be odd, then goto 4*.

4*. Choice the barycentric point v, of the triangle w,,,0, and connect g,

with »,9,,,, 2, by the line, It turns out three new triangles in 22,,,2,,

i=i+1, degy,=degy, +1.

If z<m,,,goto3 s If i=m,, goto 5*.

5% k=k+1,A,=A, U{all of new points vk}U all of new triangles} If k<

v-3 goto 2% If k=p-3, define A*=A _ s+ end the procedure .

Lemma 4,1 The  trianglation A* is an odd degree triangulation of € and A*
is uniquely determined by the triangulation A and the procedure if we choice
the most right vertex in A\A, as » in the procedure 2*

Now we can discuss the interpolation problem same as that of section 3
on Sl(A'),. But in tha actual applications, A is obtained from the information

of the location and derivative values of unknown function f, therefore, in
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general , we don’t know the location and derivative values of f at all of
new points and the midpoints of new edges on A*, To apply the interpolation
scheme (] ) on A* we require approximately to calculate all of these informa-
tion. Here we use the Z ienkiewicz’s finite element scheme .

Lemma 4.2 Let T be a triangle '

v
with vertices o, (x,,y,) (i=1,2,3), sho- f
wed in Figure 4.1, and », be the bary-
centric point of T,suppose that P; fi>
7,(T) is an interpolation operator which 8
interpolates f(y,) ,—;‘L(v,) and —'L(v,
(i=1,2,3) such that for all ge 7r2(T), V3
P(q) =q, then. (all numbers in Figure
4.1 represent relative points) . ) 5
. 3 - -
P(ﬁ(4)=—1-Z'. (f) +-1——')L(i)(—x,+ S Figure 4.1
3 i=1 3 0x ‘
. 1 1 1 -
+—%—x141+ 2x1+2)+ 1 _L(l; y,+-§—y“l+7y“’2)j (i mod 3)
PS) 1 & if oP Lsh of
=1 ; o=ty AL
‘ T 3 Z; 7 @) 3 (4) 3 z; 7 (4.1)
and
PNG+O =Ly +ga++Lravn
+ ( —-é—x: +ﬁx:+1 +]}2‘x'+z)7€xL‘(i) + (722'):1 "‘737X1+| "'717)61»,2)%(1' +1)
2 1 3 ) . 1 1 1 d .
+(77“'+7Ex“"77x~2*7£*’+2)*‘(“—Y1+I§yun+1§ynz*;§41>
2 3 1 3 d ,
+ (ﬁ}’:—rl—z‘J’ul"'sz“J’uz)_L(’ +1)+ (—’y 72)"1+1 ﬁJ’uz)—@J',L (i+2)
(i=1,2,3 and i,i+1,i +2,mod 3). ‘ (4.2)
I nter polation Scheme (1)
v Solute s7€S4(A*) such that

(i) For each vertex » and edge e of A*, if » or e is the vertex or edge

of A respectively, then the interpolation conditions is similar to the (i) and
(ii) of scheme (I).

(ii) th. v is the n;ﬁv point of A* and » is in the triangle T =p,pp, of A
then s,(y) (») and —yL(v) are given by (4.1).

If e ,ez,e3 are the new edges of A* in the triangle T =9,0,0, of A, then
s;(—é—e,) (1=1,2,3) are given by (4.2).

(iii) Boundary interpolation conditions are similar to (iii) of (I). In
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particular, such that e,0=T0ﬂF where T, is the initial triangle in the proce-
dure . Then we have the following results.

Theorem 4.3 The spline interpolant s; of f with respect to the interpola-
tion scheme (JI) on SL(A*) is existent and unique, and denote §,: f|—>s;€
SL(A'), then for any pen,(£2),S8,(p)=p,i.e., the interpolation operator S,
has only algebraic preciseness of degree 2 .-

Proof ; Theorem 4.3 follows from Theorem 3.4 and Lemma 4.2.
§ Computing Methods of Interpolanes

We only discuss the computing methods for the scheme (1)

Let s, be the spline interpolant of f on S:(A) with regard to the scheme
(I) . We represent s, as the B-nets on B, (A). Now we will compute the
all of Bezier ordinates of s,.Let v(x,,y,) be a vertex of A, a be the Bezier
ordinate with respect to » and b, be the Bezier ordinates with respect to the

points P,=R,(») (e, where e, =mw,(x,,y,), then
Lemma 5.1 Under the above assumptions, we have

J J
a=f) s b,= ) + (x,~ x) 5L () + <y,—y0)7yL<u> . (5.1)

For each edge e,;=v,(x;,y,)v;(x;,y,), denote by C,; the Bezier ordinate

with respect to the point —c,;;. Then we have,

2
Lemma 5.2 C,j:%[lﬁf(—zlﬁe,j) - 5f(01) —Sf(llj) - (x,—x,)%(v,)

j

d d g
= (yi—yp 7%’(01) - (Xj_Xi)7xL () — (yj"}ﬁ)?)f,—(l),-)]. (5.2)
Let » be an interior point of A (cf. Figure 3.1). It leads to the system,
according to (2.7),

1 0 0 0 -a, d, Bicoytriby

-a, 1 0 .- 0 0 d, Bicortrib,
0 -a, . 1 0 0 dy |=| Bycostribs | . (5.3
0 0 0 -a, H d, BaCan™t 1ub s

where v, =a0,  * B, trp.
Define p,=8co, *rb,, p;=Bcortreb,ta,p,_, (i=2,e n) (5.4)
then from (5.3), we have
d,=1/(1-a,a,+a,)ep, and d,=p,+a,a,=a,/(1-aa,+a,) p,
(i=1,2,n).

By (5.4)
d/=p taa,ea,/(1-aa,q,) B=Fcytrb,ta,p_+a,a,a/(1-a a)Pp,
=Bcotrb,vad, .,  (i=1,2 . n and dy=d,) (5.5)

Let 's be a boundary vertices of A, denote by »,,s,, Vg, (labeled
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. 1)
counetrclockwise) . Let e, =20, T V=

11040y, then we specify the two remain
ing Bezier ordinates of s, on TV,

. Now considering R,(»,), denote by
/ ny

Dy =0y, 0y, py = vg,(labeled counterclo

cloch wise) the all of vertices which

. neighbor with p, in A (cf . Figure 5.1).
Since s ,|x1) is specified, the CY}, is
known.

iv2 _ 11 1i+1, 1 . _
If o, “=a;p\+ B0, +rp,, (i=1,2, -

ees,n, —2), then

- d]2=a:d:+ﬂ11c“+-r:b1]=a11C(211)1+ﬂ:c”+r;bi T T
di=a,_ d\ "+ B _c,,+rl_ b Figure 5.1
(i=3,ee,n,-1) (5.6)
On T'&’ =00, the Bezier ordinate ,l‘;;’)=d'1'"1 . For j(j=2,+«,Ep considering

Rlz(vj,) we can compute similarly the Bezier ordinates on R,(y;) We omit the
details .

6 - Remarks

(i) For nonstandard triangulation we also may discuss the interpolation
problem with respect to the scheme ( [ ) and the scheme ([I) . Because we
can carefully study the Bezier net structure for. the other kinds of boundary
triangles .

(ii). We can modify the interpolation conditions (iii) of the scheme ().
That is.we give the directional derivative of f on each midpoint of the boun-
dary edge. We can prove that for an odd degree triangulation the spline inter -
polant s, is existent and unique if total number of vertex-boundary triangles
is odd. And for the nonstandard triangulation it is sufficient that total rumber
of the triangles which have one or three vertices on the boundary I of domain

> 2. Then we have the following results
Let A be an odd triangulation of £2, I' be the boundary of £, then when
total number of the triangles which have ox;e or three vertices on the boundary
- I'is odd. the spline interpolant s, of f with respect to the modified interpola—
tion scheme (1) on S,(A) is existent and unique.

— 441 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



References

(1) P.Alfeld and L.L.Schumaker, Constr. A'pprox. 3(1987) , 189-197,

(2] P. Alfeld , B. Piper and L.L. Schumaker, Computer Aided Geometric Design, 4 (1987) N
105-123. -

{3 ) P.ALf eld, B, Piper and L.L. Schumaker, SIAM J.Numer. Anal ., vol .24, No .4, (1987),
pp 891-911.

{43Y.S. Zhou, L.Y. Su and R.H. Wang, The dimensions of bivariate spline spaces over
triangulations, in Multivariate Approx. III, eds. by Schempp and Zeller, Birkl}ausef Verlag,
1985.

(5 ) G.Farin, Computer Aided Geometric Design, Vol .3, No.l (1986), pp.83-128.

T x ¢ m ox B &£ B M

Bo#® O
(REBTRYREHEHII)

| B

AXER—RATASAHS PRET —MC RRAEABREBR. RHH R UEEB
ﬁ%ﬁm&&ﬁﬁ—m%&ﬁﬁﬁ,#ﬁ&ﬁﬁ#QMﬁﬁﬁﬁﬁﬁ-

— 442 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



