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A Note on Preconditioned Conjugate Gradients for Solving

Singular Systems*
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The polynomial accelerations are very efficient methods for solving large
sparse linear systems, In [ 2 ] we discussed the general polynomial acceleration
methods based on basic iteration methods for solving singular systems, especi-
ally, the Chebyshev semi-iteration and the preconditioned conjugate gradient
acceleration, In [ 4] E, F.Kaasschieter discussed the preconditioned conjugate
gradients for solving singular systems of Which the coefficient matrices are
singular Stieljes matrices by using incomplete Cholesky decomposition as
preconditioners, But the proof of the main result in [ 4 ](Theorem 3,2) is
incorrect . In this note we study the incomplete decomposition of the general
singular M -matrix, when the matrix is a Stieljes one our result corrects the
error in [ 47,

Let ®€ R"™", whose entries 0<#,,< 1, i,j=1,%, n, ‘are called ignoration
factors. The most general form of an incomplete Doolittle decomposition of A¢
R™" A4+ R =LU can be expressed as follows,

For i =1, ¢, n

: i-1 .. . . ‘
uij:':aij"'“a.'j"lz Lty J =i, 0+ 1, “eesy
ko (1)
lji'f:(aji"‘ ji lekula)/"m j =i+ 1, e, n,

when 8, =1, we have the full Doolittle decomposition, 4 =LU. If R# 0,
then 4 + R = LU is called a proper incomplete Doolittle decomposition (PIDD).
If 4 is a symmetric positive semi-definite matrix (SPSD), let @€ R"" (0 <
6,<1, i,j=1, 9, n) be a symmetric ignoration matrix. The most general
form of an incomplete Cholesky. decomposition of A:A+B=CC", can be exp-
rassed as follows, ) :
For i=1,es, n

For j=1,%s, i—1
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. Jjz1
ci.i:(aij;aij..kz_l ciuC i) /€45 s ‘ (2)

= (ari 011 Z C )1/2

when 6,=1, we have the full Cholesky decomposmon A=CCT, If R#0 then
A+R=CCT is called a proper incomplete Cholesky decomposmon (PICD) .

We define 0/0=0 in (1), (2), because the matrix 4 may be singular.

In what follows in this note we follow closely the notation presented in [1]
without explanation.

Theorem | Let A€ R™" be a singular, irreducible Stieljes matrix, then the
Cholesky decomposition of A4 exists; A=CC". The entries of the triangular
matrix C satisfy the following relations,

| G0 (=100, n= 1), Gm=0,
‘ TE0G>)), S=0aG<),
and for each j(j =1,++, n—1) we have;
" There is at least one i (> j) such that ¢,;<0. (4)
Proof The existence of the decomposition follows S¢rajght from [ 11 (Corol-

(3)

lary (4.17)). (3) follows from (2) (where ¢,=1) and the properties of matr-

ix A. Now we prove (4).From the assumption of the theorem we know that

there exists a vector x>0 such that 4x= 0, i.e.CC™x =0, Thus, we have
C’x=0. ' (5)

Expanding (5), we get successively,

Con= 0, <O,

and for each j (j=n- 2, «-, 1), there exists at least one P(>)) suéh that

i< 0. .

Theorem 2 Let A4 be a singular, irreducible Stieljes matrix, then for any
symmetric ignoration matrix @ exists the corresponding incomplete Cholesky
decomposition, 4+R=CC’, If this decomposition is a PICD, then we have the
following inequalities, )

Cu>0 (i =1, n), ;<0 G>j), =0 (<j).

Proof The existence of incomplete Cholesky decomposmon\sﬁn be proof
easily (c f. [ 47 or Theorem 6 below). :

From (2) we have,

Cu=Cp>0 (i=1yeee, = 1), Ca>Con= 0,
0>c;>c; CiFj)

I]_

(6)

If the decomposition is a PICD then C+#C .and there exsmts at least one ¢ oo

(19=>jo) such that €iyjg>Ci j4- From (2) and (6) we have €14, >Ci,. We can
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assume i,<{n (otherwise the proof is completed ). From Theorem 1 we
know that there exists at least one i, (>i,) sueh that E’il, 1.0:,50, then from (2),
(6) and the inequality ¢;; >c, ., we have 0>c¢;; > 5;1,-0. Hence, we have,
again from (2) and (6), Cill'1>gi,i1' Continue this process, we get, finally,
Con>Con= 0. |

The proof of Theorem 2 provides a correct proof for Theorem 3.2\in’[4].

Now we consider nonsymmetric singular systems,

Theorem 3 Let A€ R be a singular, irreducible M -nratrix, then there
exists a unit lower triangular M -matrix L and an upper triangular M -matrix
(7 such that_A=Zﬁ, i.e.A has a Doolittle decomposition. Furthermore, holds
the following argument, For each j(j =1,«., n— 1) there exists at least one
i; (> j) and one i,6¢> j) such that le<0 and 7ji”<, 0.

Proof Since the leading principal submatrix of order (n ~ 1) of A4 is a
honsingular M -matrix of order n—1, the n—1 leading principal minore of 4

[‘”we have A=

are all positive. From the unique LDU decomposition theorem
ZDﬁEZf], where L and ﬁ are unit lower and unit upper triangular nonsingular
M -matrix, respectively, .D =diag(d,;) is a nonnegative diagonal matrix with d, "
>0 (i =1,-, n—1), hence, U=DU is a M -matrix. ‘

Since ‘4 is a singular, irreducible matrix, there exists a vector y >0 such
that Ay =0, i.e.fffy= 0 ., Since L is nonsingular we have

. Uy=0, (7)
By expanding (7 ) and considering #,>>0 (i=1,-, n— 1) we have successi-
vely,

Upy =0, Up-y,»<0and for each j(j=n-2,--, 1) there exists at least one i, (>
j) such that Fji <0. '

.Sincc AT=U'DL" is also a singular, irreducible M-matrix, there exists a
vector $>0 such that OTDLTH =0. Thus we have

DL'5= 0. | (8)

By expanding (8) and considering d,,>> 0 (i=1,++, n—1), we have successi-
vely: ,
7:,, 1< 0, and for each j(j=n-2, ., 1) there exists at least one i, (>j)
such tkat Ti’j< 0. -

Corollary 4 Let 4 be a nonsingular M-matrix or a singular, irreducible
M -matrix, Be Z™" and A< B, then B has a Doolittle decomposition.

Proof From [ 6] or Theorem 3 we know that A4 has a Doolittle decompo-
sition 4=LU. From (1) and the assumption on B one can easily get that B



has a Doolittle decomposition B:lA,LA/ and hold the following inequalities;
I<land U<{.
Crrollary 5 Let A4 be a singular, irreducible M-matrix, BEZ™" and A<
B, then B is a nonsingular M -matrix. .
~ Proof From Theorem 3 and Corollary 4 we know that 4 and B have
Doolittle decomposmons A=LU and B= LU respectively. Since 4<{B, at least
one of the following inequalities holds;
Z<£ and U <0 .
From Theorem 3 and (1)(c.f. the proof of Theorem 2) we know that the
entries of L or {/ which are strictly larger than the corresponding ones in L
or U move down or righ;wards to the rightdown corner of the matrix.There-
fore, we get, finally, ﬁ.m>74'..,.= 0 . Thus, 2and ﬁ are all nonsingular M -matr-
ices, therefore, B=£ﬁ is a nonsingular M-matrix.
Theorem 6 Let A4 be a singular, irreducible M-matrix, then A4 has an in-
complete Doolittle decomposition;
A+ R=LU. (9)
If this is a PIDD then the decomposition ( 9) yields a regular splitting of A.
Proof From Theorem 3 we know that A has full Doolittle decomposition
A=1LU. Since A be a singular, irreducible M-matrix, the leading principal
submartix of order n-1 of A4 is a nonsingular M-matrix, whose incomplete
Doolittle decomposition exists (c.f. [6]) and (1) (replace n with n-1) can
be used to compute u,;and /,, and the following inequalities hold,
WUy >0, iy j =1, n-1). (10) -
Obviously, the expressions in (1) when i =n are meaningfull and hold the
following inequalities, |

USTg k=1, 1), LTy (k=10 n = 1). (11)
Hence, 4 has an incomplete decomposition which yields a splitting of A.
A=LU-R, ) (12)

where R>0 because of the fact that the entries of the ignoration matrix @
satisfy the inequalities; 0<<6,;<1 (i, j=1,e, n). If the decomposition (9) of
A is a PIDD then R> 0. Hence, LU>A, It is easy to show (c.f.the proof of
Corollary 5) that L and U are nonsingular M -matrices. Since (LU)'=U"'L7'>
0, hence (12) is a regular splitting of 4. ’

Finally, we study the case when A is a singular H-matrix.

Theorem '7 Let A4 be a singular, irreducible H-matrix, then A4 has an in-
complete Doolittle decomposition with respect to any ignoration matrix @: A+
R=LU. If this decomposition is a PIDD, then LU is nonsingular .
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Proof At first., we assume the diagonals of A4 are all nonnegative, Let AA
be the comparision matrix for A, Obviously, A\ is a singular, irreducible M-
matrix, so that A has an incomplete Doolittle decomposition A\+IQ=£IAJ By in-
— duction on i in ( 1) it is easy to show'®) that A4 has an incomplete Déolittle
decompsitiori A+R=LU and the following inequalities hold,

Ul =1, ), 02> 1 120
0=>- '”u"!_>_’/4\ij“( J =it 1, ey n)

If the decomposition is a PIDD, then from Theorem 6 we know that L and 0

(13)

are nonsingular M -matrices. Therefore, from {(13) we k'now that U is a non-
singular upper triangular matrix.

For a general singular, irreducible "H-matrix A let D=diag (sign (a;)),
where the function sign (a¢) is defined as follows .

sign(a) = { Ly if, a0,
. -1, if a<0.

Let A =AD, obviously, Ais a singular, irreducible H-matrix with nonnegative
diagonals and A4 and A have the same comparision matrix.Since /\1/ has an in-
complete Doolittle decomposition /\1/ +IV§=IVJI§, it implies that A4 has decomposit-
ion A+RD=L{UD)=LU. If the decomposition is a PIDD, i.e.RD% 0, then R+
0, hence, i(y is nonsingular .finally, we get that LU is nonsingular.

Reference

{1] A, Berman and R.J .Plemmons, Nonnegative matrices in the mathematical sciences, Academic
'Press, 1979. ' ‘

[2]1Z.H. Cao, Polynomié] acceleration methods for solving singular systems of Itnear equations,
to appear in JCM, '

[3]Z,H. Cao et. al ., Matrix computation and root finding of equations (sec.ed., in Chinese),
High Aducational Prass, 1984.

[47] E, F. Kaasschierter, Preconditione_:d‘ conjugate gradients for solving singular systems, JCAM, 24,

265-275 (1988). '
-~ [ 51 T.A. Manteuffel, Math, Comp., 34:150, 473-497 (1980).
f63 J.A. Meijerink and H.A,Van der Vorst, Math, Comp., 31, 148-162(1977).
(73 1.A. Meijerink and H.A.Van der Vorst, J.of Comput. Phys., 44, 134-155 (1981).

— 473 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



