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Abstract

Some results concerning approximating quasidifferentials by means of poly-
hedrons and an algorithm for minimizing a class of quasidifferentiable functions
are given in this paper,The main idea here is following the one in (8],
1, Introduction
For minimizing a general quasidifferentiable function f in the sense of
Demyanov ‘and Rubinov (3],(4], (6], the necessary condition for a point x to
be a (local)minimizer reads that
-9/ GHCTIf(x) 1.D
due to (7], or

man min |o+w | =0 (1.2)
wedf (x) pedf (x)

(4). If the condition (1,]1) or (1.2) is not satisfied at x, then the direction
d=—(0,+wo)/ | v5+w, | (1.3)
is a steepest descent direction, where

2o +w, || = max min |s+w || >0 (1.4)
wedf(x) wved fix)

(4). For a general quasidifferentiable function it is not easy to construct nu-
merical methods, This is not only because it is very difficult to calculate

(1.4) or to check (1.2), i.e., (1.1), but also because the uniqueness in the
sense of the equivalence class of quasidifferentials of a quasidifferentiablé fun —
_ction at a point can not be used in practice, For this reason we only study a
certain class of quasidifferentiable functions in this paper,

Definition 1 1, Let f be quasidifferentiable in R", A pair of nonemty convex
compact sets [ﬁ*f(X),d*f(x)] is said to be the quasidifferential kernel of f at
x if the following conditions are satisfied
S Gsdy=f s d) - f (x5 d)

=6%d |d f(x)) -6"(d]d* f(x)), deR" (1.5)

.

and
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00 (x) = M Of(x)+9f(x)]
’ (0f(x), 0f(x)JDf(xy

*fix)= N (3f (x) —af (x))
(0f¢x), 0 (x)JeDf(x)

(1.6)

£9J.

Let g(R") denote such a subclass of quasidifferentiable functions that
every function in Q(R") satisfies the conditions (1,5) and (1.6). Correspon —
dingly,d, f(x) and 4*f(x) are called sub- and super-quasidifferential kernel, re-
spectively, Clearly, convex and concave, D,C functions in the sense of Hiria-
rt -Urruty belong to Q(R"),

The necessary condition for feQ(R") to take a minimum at x is

*f ()T, f(x). (1.7)
This condition is very difficuit to be verified, We will pay our attention to
a special case where

* f(x) =coS (1.8)
and S is a finite set of points,

The ABS methods by Abaffy, Broyden and Spedicato, {1,2], can be used
to construct an algorithm of polyhedron approximating subdifferentials of finite
convesy functions {27, In the convex case in which

S={0},

and hence

*f(xy=1{0},
The algorithm SAPA given in (8)}is actually a descent algorithm for minimi -
zing a finite convex function, This approach can be e¢xtended to the case in
which *f(x)is of the form (1.8). We confine our goal to minimizing such a
function being of the form

f(x)=:fo(x)—r3r§aIXﬁ(x) (1.9

where f; is convex, fieC', iel, and I is a finite index set,

In Sec.2 a general representation for polyhedral approximations to quasi-
differentials is given and the principle of an algorithm for minimizing a func-
tion being of the form (1.,9) is given in Sec.3.

2. Polyhedral approximations

2.1 General formulation

Consider the following problem
min f(x)=fy(x)-max £ (x) xeR" (2.1)
il

where f. R"»R' is convex, not necessarily continuously differentiable, f,R"—>

R'ec!, not necessarily convex,. I: ={1,2,+,m} is a finite index set,
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The function in (2,1) belongs to Q(R"),
Let 9,(); = f(x +td), deR” | (eR!, Since
o, (25K) =1im@( + 4k) - 94 (¢ )/4
=£im0 Rx+ @ +k)d—- f(x+td)/i
=0 (kd|df(x +1d)) -6*kd | -0 f (x +1d)),
one has that
@5 (0sk) = f (x5 kd)

= max km+ min kn,
me {3 f(x),d> ne (d f(x),d>

Hence, one obtains the general expression of a quasidifferential of ¢, at the
origin,

094(0) =<df (x),d>, 094€0) = 0f (x), d).
It follows that

094 €0) +09,€0) =2 f(x) +0f(x),d >,

0904(0) ~094(0) = (0f(x) =0f (x),d>.
According to the results due to (5]}, one has that

0,000 = [Of @) +0f(x),d>

D (x)

" - Trx) -7
@2 (0) ﬂ[(])<f<x> if(x),dy. (2.2)

Now for any vector u such that

p = J 7
ued f (x) m@) @f @) +0f(x))

and any vector w such that
wed* f(x)= () @f(x)-af(x)),

Dfix)
we obtain
(u,dYed, @i(0), (w,d>d* 9, (0)
and
O FO),dYCT @a(0), @*F),dYTI0,00).
Let
Ca,8): = [ | Qfeo +if ), d), (2.3)
DS (x)
e, B = [ | Gfee)~afx),dy. (2.4)
BDf(x)

Then we have the following
Lemma 2,1 The scalars g,é,ﬁ,i defined above can be evaluated by the

following formulae

a=min{f (x;d), - f' (x; —d)} =mind @,(0), (2.5)
B=max{f (x;d), - f (xs ~d)} =max "9, (0), (2.6)
@=min {0, f (x;d) + f (x5 —d)} =mind*p,(0), (2.7)
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f=-a=maxd*p,(0).
Proof Since J,9,(0) and *@,(0) are nonempty and finite intervals, one
has that

a =min {y|ved ,9,(0)} = max min_ u,d)
- D(x> ued f(x)+df(x)

B =max {v|ved ,0,(0)} = min max _ {u,d>
- DS (x) ued f(x)+9f(x)

2 = min {y|yeﬂ*q)d(o)}:max min _ {u,d
Dfix) uedfix)+df(x)
F: '__a~0

According to the definitions in Sec,1 and the results due to (5], the preée—
ding expressions on the right hand side of equalities given above are equl
to ~f(xs —d), f sd)y — flg-d), Flxsd),

respectively, there?ore, one has that

a=-f(x; -d)=min{f" (x;d), - f (x; —d)} =mind g, (0)

B=/f (x;d)=max{f (x;d), - [ (x; —-d)} =maxd g, (0)
a=—f (x;d)= -max (0, - f (x;d) - f (x; —d)} =mind"p, (D)
B=—-a=maxd*p,(0).

The lemma has been proved.

Let bdB, (0): = {ueR" ||u | =1}. Then ¢ 0,(0) and *9,(0) can be regarded
as the projections of 4 f(x)and ¢*f(x) onto the direction d, respectively,
Taking {d;}7CbdB, (), we have that

0, f )T 4y = (a;, B.)di + (o p'd =0}
and

0" f T =@, Bd; + (o p'd = 0},
in other words, one has that

IS COC[ )y, 0*f (x)CﬂA".
Since 4, f(x) and 0* f(x) are compact convex, it follows that when d runs
over bdB () the intersections above comprise just the kemel of quasidifferen-
tial of f at x,i.e.,

0 Sxy= [ 4 (2.9
debdB,(0)

Fro= [ 44 ' (2.10)
debdB (0>

The equalities (2,9) and (2,10) imply that the J_f(x) and d* f(x) can be ap-
proximated by means of polyhedrons determined by a set of unit vectoss,

2.2 Determination of descert directions

We denote by P, (x,) the ith polyhedral approximations to 7,/ (xx) and
7" f(x:), respectively, at the kth iteration,
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Lemma 2.2, If P’ (x,)CP, (xp), then 0" f(x,)Ca, f(xp).
Proof By contradiction, assume that
0" f (x0T, f(x).
Since

Proj )d,:Projd.f(xk)d, :projdld,

P (xy
and

Projp,(xk)d,:Projd.f(md, =Projd,,
one has that for any le {1,+,m},
S*(d)| Pi(x1)) =6"(d, |0, f(x1)) = 6" (d,]4D), (2.11)
8" (—di|Pi(x1)) =6 (=di |0, f(x4)) = 6" (= d)|a). (2.12)
For 6*(d,|P'(x»))and J6*(-d,|P' (x)) we have the equalities similar to (2.11)
and (2.12). By the assumption of contradiction we have

8% (d,|d, f (x> 6% (d)|0" £ (xi)), (2.13)

8*(—d||d, frINS*(~d 0" fxi)) . (2.14)
It follows from (2,11) to (2.14) that

8*(d,|P, (x> 6% (d)| P (x4)), (2.15)

8% (—d;| P (xi))N0"(—d)|P' (x)), (2.16)

Vie {1,ee,m}.
According to the structures of P;(xpand P'(xy) and to (2.16) — (2.16) and to
the assumption of contradiction, we have

Pi(xy) = @AI:Ri(xk)y (2.17)

The inclusion relationship (2.17) contradicts the hypothesis of the lemma
P xOCP (xi0).
Hence ¢* f(x)(d, f(x1). The demonstration is completed. . -]
Let
G = {ueR"u =d, or —d;,|d | =1, Ie{1,2,m,}},
where G, is used to construct the ith approximation,
Theorem 2.3, If P (x,)C P, (x,), but
) P x0T P (x0),
then there exists at least one d¢G, such that
[ (x5 d) <0, (2.19)
i.e.,d is a descent direction of f at x,,If x, is a minimizer to (2,1), then
one has
P ix)C P (xp).
Proof If the condition (2,18) holds, then according to Lem.2,2 one has

7 f (xoEa, fxn.
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This implies that x, is not a (local) minimizer, The second assertion can be
issued immediately from this,
According to (2.18) and the structures of P;(x,;) and P°(x,), there exists
at least one deG; such that
8*(d [P (x)) 6™ [Py (x)). (2.20)

Since
6*(d [P )= 6" (d " F i), ¥ |P ) =" [, f xi))

due to (2.11) and (2.12), one has

[ Casdy =6%d |0, f(xi)) 8% 10" f(x:))

=0"d |P, (x)) - 6% |P' (x1)).

It follows from (2,.20) that

S (x5 d 2 <20, (2.2D)
The inequality (2.21) implies that d is a descent direction of f at x,, The de-

monstration is completed, ]
Corollary If 9*f(x,)={0}, m, =1, and (2.18) holds, then d=d, or —d, is a
descent direction, ]
Noticing that it can not be conjectured that
0*f )Ty f(x0).
We will concentrate our attention in the next section to the case where
P'(x)CPi(xp). (2.22)

3. An aigorithm for the problem (2.1)
An algorithm, named by SAPA, for minimizing a finite convex function
was given in [8]). To begin with, we go back to this algorithm,
2.1 The algorithm SAPA for minimizing a finite convex function,
Algorithm SAPA ,
Let the initial data x,, &, (C>0), i; =0 be given,
Step 1. Execute Algorithm IPA,
The following steps are carried out in multiprocessors,
Step 2. ‘Compute
A () by Algorithm NVS,
In préctica] computation, we could define
s:= 2 oo
ve-oA (9)
If s/ep, then set g: =y, and stop,
Step 3. Execute Algorithm CTO,
Step 4. Execute Algorithm DDD;
Step 5, i:=i+1and go to Step 2,
/SAPA /7
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3.2 An algorithm for the problem (2.1) B
For simplicity the notation [4f(x,), ¢f(x,)) is used instead of (o f (x0)
. 7 f(xe)].
Lemma 3,1. If feQ(R") and wedf(x,), but w¢ df(x,), then the direction
d=w-proj, .. . w=w-Nrdf(x)= - Nr(@f(x0)-w)
is a descent direction,
Proof Since Oegf(xk), one has
F(xesh)>0, vheR",
Since
S (xusdo) =Proj, ., do=P10jsu< 0,
where do=d/ |d |, u =Proj,,, wedf(xi), it follows that
S Gusd) = f Gz d) = F (xasd) < 0
due to (9],
Let R(x;): = {iel If;(xk) :rr_BIxf,(xk)}. Then we have that

f (xx)=dfo(x) - B, If(xi) =B- B,
where
B: =co(V fi(x]ieR(x0)},

[10]. Clearly, 4f(x,) is a polyhedron formed by taking the convex hull of
a finite number of extreme points, Let Exdf(x,) denote the set of all extreme
points of df (x,).

Algorithm AQD
X1l ={1,°-,N}, i:=1,k: =1,
Step 1. Compute
R (xp)
Exdf(xi).
Step 2. For wieExdf(x: (x;) execute
SAPA,
If a descent direction d, is found, determine the
stepsize o, by a line search and go to Step 4.
Step 3. If i =N then set x*:=x, and stop,
otherwise set i: =i +] and go to Step 2.
Step 4. Compute
Xport =X+ apdy, k:i=k+1.
Go to Step 1.
7/ AQD /
A convergence theorem similar to the one given in [8,Th,6.2) and a corolla-

ry corresponding to the one given in [8,Corol,of Th,6.2) can be established
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by following the similar way given there
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