Note on the RMI Method and RMI Solver*

L,C,Hsu

(Dalian University of Technology)

In a booklet entitled "Relation-Mapping-Inversion (RMI) Method" (Jiangsu Education Publishing House (China), Nanking 1989) by the present author and the co-author Y.X.Zheng, the general RMI method and more than 20 examples involving various problems (solved by RMI) have been expounded. The RMI method used as a working principle applies to every branch of mathematical science and it may be formulated briefly:

$$(S, \underline{x}) \xrightarrow{\varphi} (S^*, \underline{x}^*) \xrightarrow{\psi} x^* \xrightarrow{\varphi^{-1}} x$$

where $(S,\underline{x})\in\Sigma$ (a given class of problems with unknowns \underline{x} to be found), $\varphi\in\Phi$ (proposed family of invertible mappings), $\{S^*=\varphi(S),\underline{x}^*=\varphi(\underline{x})\}$ is the image system with the unknown image \underline{x}^* to be determined, $\psi\in\Psi$ (proposed family of image-determining procedures or solving operators), x^* is the image of x obtained via ψ , φ^{-1} denotes the inverse mapping, and $x=\varphi^{-1}(x^*)$ is the desired answer/solution obtained via φ^{-1} .

Generally, Σ is called a RM I solvable class with reespect to Φ and Ψ , and denoted by (Σ, Φ, Ψ) . Some inverse problems have also been investigated (cf. J. Qufu Normal Univ., 15(1989), No.2, p. 1-9). Here we propose that various types of computerized "RMI Solvers" may be designed, which should in general consist of 5 machinery units, namely (1) a sorting machine used for deciding $S \in \Sigma$ and clarifying \underline{x} , (2) a machine used for choosing suitable mappings φ 's from Φ (proposed store of mappings and compound mappings), (3) a machine used for dealing with S^* and for determining x^* by use of suitable $\psi \in \Psi$, (4) a machine of inverting x^* by use of φ^{-1} , (5) a machine for checking the result.

For examples, some simpler RMI Solvers ([])([]), etc., may be designed, where ([]) is that used for summing numerical series and power series by use of differential operators, etc., ([]) is for finding closed forms of various algebraic/combinatorial sums by means of Gould-Hsu inversion and the hypergeometric series method, and ([]]) is for solving (IVP) of ODE using Laplace transforms, etc.

^{*} Received Nov. 3, 1991