Two Commutativity Results for Semiprime Rings*

Guo Xiuzhan

(China University of Mining and Technology)

Throughout this paper, R will represent an associative ring (may be without unity) with center Z(R). Given x, y in R, we set (x, y) = xy - yx as usual.

Quadri, Ashraf and Khan [6] proved that a semiprime ring R satisfying $(xy)^2 - xy \in Z(R)$ for all $x, y \in R$ is commutative. In this direction we prove the following

Theorem | Let R be a semiprime ring satisfying

$$(C) \qquad (x^m y)^n - x^m y \in Z(R)$$

for all $x, y \in R$, where m, n are fixed positive integers, n > 1, then R is commutative.

In [2] Gupta has proved that if a semiprime ring R with unity satisfies

$$(1) \quad (x^n, y) - (x, y^n) \in Z(R) \qquad (2) \quad (x^{n+1}, y) - (x, y^{n+1}) \in Z(R)$$

for all $x, y \in R$ and a fixed integer n > 1, then R is commutative. In this direction we prove the following

Theorem 2 Let R be a semiprime ring satisfying

$$(\mathbf{p}) \qquad (x^m, y^n)^t - (x, y^s) \in \mathbf{Z}(\mathbf{R})$$

for all x, $y \in R$, where m, n, s, and t are fixed positive integers such that (m+n)t=s+1 and mt>1, then R is commutative.

For the proofs of above theorems, we need the following lemmas.

Lemma | Let R be a semiprime ring, $0 \pm a \in Z(R)$ and $x \in R$. If $ax \in Z(R)$, then $x \in Z(R)$.

Lemma 2^[5] If a ring R has a nonzero right ideal A which is nil of bounded index, then R has a nonzero nilpotent ideal.

Lemma 3 Let R be a prime ring satisfying (C), then R has no nonzero nilpotent elements.

Proof Let $a \in R$ such that $a^2 = 0$. By hypothesis we have $-(ax)^m a = ((ax)^m a)^n - (ax)^m a \in Z(R)$ for all $x \in R$. Thus, $(ax)^{m+2} = (ax)^m axax = xa(ax)^m ax = 0$. If $aR \neq 0$, then R has a nonzero nilpotent ideal by Lemma 2, which contradicts to the fact

^{*} Received Jan. 16, 1990

that R is prime. Thus, aR=0, and hence aRa=0. This implies that a=0.

Lemma 4 Let R be a division ring satisfying $x^n = x$ for all $x \in Z(R)$, where n > 1 is a fixed integer, then $|Z(R)| \le n$.

Proof Since Z(R) is a field, $x^n = x$ has at most n solutions.

Proof of Theorem | As is well known, R is a subdirect sum of prime rings R_a each of which as a homomorphic image of R satisfies (C). Then it suffices to show that if R is a prime ring satisfying (C), then R is commutative.

If there exists an element c in Z(R) such that $c^n - c = 0$. By hypothesis we have $c^n(x^m y)^n - c(x^m y) \in Z(R)$ for all $x, y \in R$. But $c^n(x^m y)^n - c^n(x^m y) \in Z(R)$. Then $(c^n - c)(x^m y) \in Z(R)$. Thus, by Lemma 1 we get $x^m y \in Z(R)$ for all $x, y \in R$. Now, by Lemma 3 and a result of Herstein [3], R is commutative.

If $c^n = c$ for all $c \in Z(R)$, then we have

 $(x^{(m+1)n}-x^{m+1})^n=x^{(m+1)n}-x^{m+1}$ for all $x \in R$. That is $x^{m+1}f(x)=x^{m+1}$, where f(x) is a polynomial with integral coefficients, f(0)=0. Thus, R satisfies a polynomial identity and $x^{m+1}=0$ for all $x \in J(R)$, the Jacobson radical of R. Hence, by Lemma 3 J(R)=0. Then it suffices to show that a primitive ring R satisfying (C) is commutative.

Suppose that R is a division ring, then by [4, Theorem 1] R is finite-dimensional over Z(R). By Lemma 4 we have $|Z(R)| \le n$. Then R is a finite division ring and therefore a field.

Suppose now that R is a primitive ring, if it is not a division ring, then, the complete matrix ring D_k over a division ring D(k>1) will be a homomorphic image of a subring of R and will satisfy (C). In particular if we choose x=E and $y=E_{12}$, which gives a contradiction. Hence R is a field by the above discussion.

Lemma 5 Let R be a prime ring satisfying

$$(P_0) \qquad (x^m, y^n)^t - (x, y^s) \in Z(R)$$

for all $x, y \in R$, where m, n, s, and t are fixed positive integers such that mt > 1, then

- (1) R has no nonzero nilpotent elements.
- (2) R has no zero divisors.

Proof (1) Suppose, to the contrary, that $a^2 = 0$ for some nonzero element a in R. By hypothesis we have

 $(a^m, (ax)^n)^t - (a, (ax)^s) \in Z(R)$ for all $x \in R$. That is $(ax)^s a \in Z(R)$. Then $(ax)^{s+2} = (ax)^s axax = xa(ax)^s ax = 0$, If $aR \neq 0$, then by Lemma 2 R has a non-zero nilpotent ideal, which is a contradiction since R is prime. Thus aR = 0, which contradicts that $a \neq 0$.

(2) Let $a, b \in R$ such that ab = 0, then $(bRa)^2 = bRabRa = 0$, and hence bRa = 0.

R is prime, then a=0 or b=0.

Lemma 6 Let R be a semisimple ring satisfying (P_0) , then R is commutative.

Proof The hypothesis is inherited by all subrings and all homomorphic images of R. Also, no complete matrix ring D_k over a division ring D(k>1), satisfies the hypothesis, as a consideration of $x=E_{12}$ and $y=E_{11}$ shows. Using these facts and the structure theory of primitive rings, we may assume that R is a division ring.

If there exists $c \in Z(R)$ such that $c^{mt} \neq c$. Replacing x by cx in (P_0) we have $c^{mt}(x^m, y^n)^t - c(x, y^s) \in Z(R)$ for all $x, y \in R$. But $c^{mt}(x^m, y^n)^t - c^{mt}(x, y^s) \in Z(R)$, then $(c^{mt} - c)(x, y^s) \in Z(R)$. By Lemma 1 we have (1) $(x, y^s) \in Z(R)$. Now, replacing x by xy in (1) we get (2) $(x, y^s) y \in Z(R)$. Using (1) and (2) and again by Lemma 1 we obtain $y \in Z(R)$ unless $(x, y^s) = 0$. If $y \in Z(R)$, then $(x, y^s) = 0$. In either case, we have $xy^s = y^sx$ for all $x, y \in R$. By a result of Herstein [3], R is a field.

If $c^{m\ell} = c$ for all $c \in Z(R)$, then by Lemma 4 Z(R) is a finite field. By (4, Theorem 1) R is finite-dimensional over Z(R). Then R is a finite division ring, and hence R is a field.

Proof of Theorem 2 It suffices to show that a prime ring R satisfying (P) is commutative.

By Lemma 5 R has no zero divisors. Then the characteristic of R is 0 or a prime integer p. If R is of characteristic p, for $r \in R$ and $\overline{i} \in \mathbb{Z}_p$, we define $\overline{i}r = ir$, where \mathbb{Z}_p is a ring of integers modulo p, then R is an algebra over \mathbb{Z}_p . If the characteristic of R is 0, localizing R at integers does not disturb our basic hypothesis (since (m+n)t=s+1), so that we may assume that R is an algebra over a field.

Pick $a, b \in R$, let S be the subalgebra of R generated by a and b, and J(S) be the Jacobson radical of S. Then, by [1, Theorem 5] J(S) = 0. Thus, by Lemma 6 S is commutative and therefore ab = ba. Hence R is commutative. The following are immediate consequences of Theorem 2.

Corollary | Let R be a semiprime ring satisfying $[x^n, y] - [x, y^n] \in Z(R)$ for all $x, y \in R$ and a fixed integer n > 1, then R is commutative.

Corollary 2 Let R be a semiprime ring. Then the following statements are equivalent:

- (1) R is commutative.
- (2) R satisfies $[x, y]^m [x, y^{2m-1}] \in Z(R)$ for all $x, y \in R$ and a fixed integer m > 1.
 - (3) R satisfies $(x,y)^n (x^{2n-1}, y) \in Z(R)$ for all $x, y \in R$ and a fixed integer

n > 1.

The ring of 3×3 strictly upper triangular matrices over some field provides an example to show that R is semiprime in Theorems 1 and 2 is not superfluous.

References

- [1] S. A. Amitsur, A generalization of Hilbert's nullstellensatz, Proc. Amer. Math. Soc., 8(1957), 649—656.
- [2] V. Gupta, Some remarks on the commutativity of rings, Acta Math. Acad. Sci. Hungar., 36(1980), 233-236.
- [3] I. N. Herstein, Two remarks on the commutativity of rings, Canad. J. Math., 7(1955), 411—412.
- [4] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc., 54(1948), 575—580.
- [5] Xie Bangjie, J. of Natural Sciences of Northeastern People's University, 1 (1955), 13-34.
- [6] M. A. Quadri, M. Ashraf and M. A. Khan, A commutativity condition for semiprime rings— [], Bull. Austral. Math. Soc., 33 (1986), 71—73.

半质环的两个交换性结果

郭修展

(中国矿业大学数力系,徐州)

摘 要

定理 I 设 \dot{R} 是半质环, m, n 是固定正整数,且 n > 1. 如果 R 满足条件 $(x^m y)^n - x^m y \in Z(R)$, $\forall x, y \in R$,

则 R 是交换环.

定理 2 设 R 是半质环,m, n, s, t 是固定正整数,且 (m+n)t=s+1, mt>1. 如果 R 满足条件

$$[x^m, y^n]^t - [x, y^s] \in Z(R), \forall x, y \in R,$$

则 R 是交换环.