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Two Commutativity Results for Semiprime Rings*
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Throughout this paper, R will represent an associative ring ( may
be without unity) with center Z(R). Given x, y in R, we set (x, ylJ=xy— yx
. as usual.
Quadri, Ashraf and Khan [ 6 ] proved that a semiprime ring R satisfying
(xy)*- xye Z(R) for all x, yeR is commutative. In this direction we prove the

following

Theorem | Let R be a semiprime ring satisfying

(Cc) (x"y)"= x"yeZ(R)
for all x, yeR, where m, n are fixed positi\;e integers, n>1, then R is commu-
tative .

In [ 2] Gupia has proved that if a sémiprime ring R with unity satisfies
(1) X", p)-0x, YJeZ(R)  ¢2) (x"7, y)-(x, Y )ezZ(R)
for all x, yeR and a fixed integer n>>1, then R is commutative. In this direc-
tion we prove the following
Theorem 2 Let R be a semiprime ring satisfying
(P) Cx™, "Y'= (x, y'J€Z(R)
for all x, yeR, where m,n, s, and r are fixed positive integers such that
(m+n)t=s+1 and mr>1, then R is commutative.
For the proofs of above theorems, we need the following lemmas.
Lemma |~ Let R be a semiprime ring, 0%a€¢Z(R) and xeR. If axeZ(R) ,
then xe Z(R). '
Lemma 2£5] If a ring R has a nonzero right ideal A which is nil of boun-
- ded index, then R has a nonzero nilpotent ideal. )
Lemma 3 Let R be a prime ring satisfying (C), then R has no nonzero
nilpotent elements.
Proof Let g¢R such that a’=0. By hypothesis we have - (ax)"a=((ax)"a)"
—(ax)"a€ Z(R) for all xeR. Thus, (ax)™ = (ax)"axax=xalax)"ax=0. If aR>0,
then R has a nonzero nilpotent ideal by Lemma 2, which contradicts to the fact
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that R is prime. Thus, aR=0, and hence gRa=0. This implies that a=0.

Lemma 4 Let R be a division ring satisfying x"= x for all xeZ(R), where
n>1 is a fixed integer, then |[Z(R)|<n.

Proof Since Z(R) is a field, x"=x has at most n solutions. )

Proof of Theorem | As is well known, R is a subdirect sum of prime rings
R, each of which as a homomorphic image of R satisfies (C). Then it suffices
to show that if R is a prime ring satisfying ‘(C}‘, then R is commutative.

If there exists an element ¢ in Z(R) such that c¢"-c¢30. By hypothesis
we have ¢"(x"p)"-c(x"y)eZ(R) for all x, yeR. But c"(x"y)"-c"(X"y)€Z(R).
Then (¢"-¢) (x"y)€Z(R). Thus, by Lemma 1 we get x"ye Z(R) for all x, yeR.
Now, by Lemma 3 and a result of Herstein [ 3], R is commutative.

If ¢"=c for all ceZ(R), then we have '

(xtmtDn_ gmtlyn=x(mrDn_ ymtl for all xeR. That is x™"!f(x)=x""!,
where f(x) is a polynomial with integral coefficients, f(0)=0. Thus, R satisfies
a polynomial identity and x™ =0 for all xe J(R), the Jacobson radical of R.
Hence, by Lemma 3 J(R)=0. Then it suffices to show that a primitive ring R
satisfying (C) is commutative. .

Suppose that R is a division ring, then by [4, Theorem 1) 'R is finite-
dimensional over Z(R). By Lemma 4 we have [Z(R)|<n. Then R is a finite
division ring and therefore a field. ‘

Suppose now that R is a primitive ring, if it is not a division ring, then,
the complete matrix ring D, over a division ring D (k>1) will be a homomorphic
image of a subring of R and will satisfy (C). In particular if we choose x=E
and y=E,,, which gives a contradiction. Hence R is a field by the above dis-
cussion .

Lemma 5 Let R be a prime ring satisfying

(Py) (x", "3 - (x, y'JeZ(R)
for all x, y¢R, where m, n, s, and r are fixed positive integers such that m>
1, then '

(1) R has no nonzero nilpotent elements.

(2) R has no zero divisors.

Proof (1) Suppose, to the contrary, that ¢°=0 for some nonzero element
a in R. By hypothesis we have

Ca™, (ax)")'~(a, (ax)'}eZ(R) for all xe R. That is (ax)'aeZ(R).

Then (ax)""= (ax)’axax= xa(ax)’ax=0, If aR¥0, then by Lemma 2 R has a non-
zero nilpotent ideal, which is a contradiction since R is prime. Thus aR=0,
which contradicts that a0, |

(2) Let a, bR such that @b=0, then (bRa)’= bRabRa=0, and hence bRa=0.
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R is prime, then a=0 or b=0.

Lemma 6 Let R be a semisimple ring satisfying (P,), then R is commuta-
tive,

Proof The hypothesis is inherited by all subrings and all homomorphx:c
images of R. Also, no complete matrix ring D, over a division ring D(k>1),
satisfies the hypothesis, as a consideration of x=E;, and y= E,, shows. Using
these facts and the structure theory of primitive rings, we may assume that R
is a division ring. )

If there exists ce¢Z(R) such that c¢™3c¢. Replacing x by cx in (P,) we
have ¢™'(x", y")'~ clx, y'JeZ(R) for all x, yeR. But c™(x", y")' - c™(x, y*Je
€Z(R), then (¢™-¢)(x, y'JeZ(R). By Lemma 1 we have (1) (x, y'JeZ(R).
Now, replacing x by xy in (1) we get (2) (x, y'JyeZ(R). Using (1) and
(2) and again by Lemma 1 we obtain yeZ(R) unless (x, »'1=0.1If yeZ(R),
then. (x, y°) =0.In either case, we have xy’'= y'x for all x, yeR. By a result
of Herstein [ 3], R is a field.

If c™=c¢ for all ceZ(R), then by Lemma 4 Z(R) is a finite field. By (4,
Theorem 1] R is finite-dimensional over Z(R), Then R is a finite division ring,
and hence R is a field.

Proof of Theorem 2 It suffices to show that a prime ring R satisfying (P)
is commutative.

By Lemma 5 R has no zero divisors. Then the characteristic of R is 0 or a
prime integer p. If R is of,'éharacteristic p, for reR and i_(Zp , we define ir=
ir, where Z, is a ring of i}ltegers modulo p, then R is an algebra over Z,.
If the characteristic of R is 0, localizing R at integers does not disturb our
basic hypothesis (since (m+n)r=s+1), so that we may assume that R is an al-
gebra over a field. )

Pick a, beR, let S be the subalgebra of R generated by a and b, and .
J(S) be the Jacobson radical of S. Then, by (1, Theorem 5) J(S)=0., Thus,
by Lemma 6 S is commutative and therefore ab= ba. Hence R is commutative.

The following are immediate consequences of Theorem 2.

Corollary | Let R be a semiprime ring satisfying {(x", y1—(x, »"J€Z(R)
for all x, R and a fixed integer n>1, then R is commutative.,

Corollary 2 Let R be a semiprime ring. Then the following statements
are equivalent, \

(1) R is commutative. .

(2) R satisfies (x, )™~ (x, y*" ' J¢Z(R) for all x, yeR and a fixed inte-
ger m>1.

(3 ) R satisfies [x,y]'v'~.[x2"'l, y)leZ(R) for all x,ye¢R and a fixed .integer
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n>1.

The ring of 3x 3 strictly upper triangular matrices over some field provi-
des an example to show that R is semiprime in Theorems 1 and 2 is not
superfluous.

References

[1] S.A. Amitsur, A generalization of Hiibert’s nullstellensatz, Proc. Amer. Math. Soc., 8(1957),
649 —656.

{271 V. Gupta, Some remarks on the commutativity of rings, Acta Math. Acad. Sci. Hungar.,
36(1980), 233—236.

[3] I. N. Herstein, Two remarks on the commutativity of rings, Canad. J. Math., 7(1955), 411—
412.

{47 I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc., 54(19%48), 575—
580.

{ 5] Xie Bangjie, J. of Natural Sciences of Northéastern People’s University, 1(1955), 13—34.

[6]1 M. A. Quadri, M. Ashraf and M. A. Khan, A commutativity condition for semiprime rings-

I, Bull. Austral. Math. Soc., 33(1986), 71—73.

FREAFIZBREER
B R
CRETWAEHAR, BH)

] L 2

ER WRELER, m nREETERYE, Hr>1l. MBERBEEHY
(x"y)"—x"ye Z(R), Vx, yeR, '

TR B IR, : .

EEB2 BRREEER, mon,s, i RECEEE, H (m+tmr=s+1, m>1. MBER
R &

S x™, "3 '-(x, y'JeZ(R), V¥x, yeR,

W REZL#IF.

— 578—

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



