A Short Proof on the Bandwidth of A Graph and Its Complement*

Lin Yixun Yuan Jinjiang

(Department of Mathematics, Zhengzhou University)

A labeling of a graph G = (V, E) is a bijection $f: V \rightarrow \{1, 2, \dots, |V|\}$. For a labeling f, denote

$$B(G, f) = \max_{xy \in E} |f(x) - f(y)|.$$

The bandwidth of G is defined by

$$B(G) = \min_{f} B(G, f)$$

P. Z. Chinn, F. R. K. Chung, P. Erdös and R. L. Graham^[1] proved that $B(G) + B(\overline{G}) \ge n-2$

where \overline{G} is the complement of G. In this note we present a short proof. We will use a variant of Harper's lower bound [2] as follows.

Remark | For any labeling f,

$$B(G, f) \ge \max_{1 \le m \le n} |N(f^{-1}((1, m)))|$$

where $(a, b) \triangleq \{x \in Z | a \le x \le b\}, N(S) \triangleq \{y \in V \setminus S | \exists x \in S \text{ such that } x y \in E(G)\}$

Two special graphs P_n^k and P_n^k will be taken into account, where

$$V(P_n^k) = V(\overline{P}_n^k) = \{1, 2, \dots, n\},\$$

$$E(P_n^k) = \{ij | 0 < j - i \le k\},\$$

$$E(\overline{P}_n^k) = \{ij | k + 1 \le j - i \le n - 1\}.$$

When drawing these graphs, we always put the vertices $1, 2, \dots, n$ successively on a line (as shown in Fig 1).

Remark 2 $B(\overline{P}_n^k) \ge n-k-2$.

Proof For any given labeling f, denote $u_i = f^{-1}(i)$, $i = 1, 2, \dots, n$. In the sequence (u_1, u_2, \dots, u_n) , let u_m be the first vertex which is adjacent to a pre-

Figure 1 (\bar{P}_5^2)

vious vertex, say u_l (l < m). Without loss of generality, we may assume that

^{*} Received Jan., 7, 1990.

 $u_1 < u_m$. Then $k+1 \le u_m - u_1 \le n-1$.

We denote $S = \{u_1, u_2, \dots, u_m\} = f^{-1}([1, m])$ and $u^* = \min\{u_1, u_2, \dots, u_m\} \le u_l$. Since $S \setminus \{u_m\}$ is an independent set, it follows that

$$S\subseteq \{u^*, u^{*+} k\} \cup \{u_m\}.$$

Moreover, each vertex $x < u^*$ is adjacent to u_m ; each vertex $y > u^* + k$ is adjacent to u^* . Thus

$$N(S) \supseteq V \setminus ([u^*, u^*+k] \cup \{u_m\}).$$

Therefore

$$|N(S)| \ge n-k-2$$
.

By Remark 1,

$$B(G, f) \ge |N(S)| \ge n - k - 2$$

for any labeling f. This completes the proof.

Remark 3

$$B(G) + B(\overline{G}) \ge n-2$$
.

Proof Suppose B(G) = k. Then $G \subseteq P_n^k$, $\overline{G} \supseteq \overline{P}_n^k$. Thus $B(\overline{G}) \ge B(\overline{P}_n^k) \ge n - k - 2$, and so $B(\overline{G}) + B(G) \ge n - 2$.

200

It is easy to construct a labeling which achieves the bound in Remark 2. So $B(\overline{P}_n^k) = n - k - 2$. By using the same method, we can obtain that $B(\overline{C}_n^k) = \min\{n - k - 2, 2(n - 2k - 2)\}$.

References

- [1] P.Z. Chinn, F.R. K. Chung, P. Erdös and R. L. Graham, On the bandwidth of a graph and its complement. The Theory and Applications of Graphs (G. Chartrand, Ed.), Wiley (1981), 243—253.
- [2] L. H. Harper, Optimal numberings and isoperimetric problem on graphs. J. Combin. Theory 1 (1966), 385-393.

关于图与补图的带宽的一个简单证明

林诒勋 原晋江

(郑州大学数学系,郑州)

关于图与补图的带宽,P. Z. Chinn, F. R. K. Chung, P. Erdös 和R. L. Graham证明了 $B(G)+B(\overline{G})\geq n-2$ 。本文给出一个简单证明。