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1. Introduction

We consider the Cauchy problem
w = Au™ - f{u), in §=RN x(0,c0), (1)
u(z,0 = p{z), in RN, (2)
where ¢ is a given bounded nonnegative function and f is a C! function such that
f(0)=0 and f(u)>0 ifu > 0.

Equation (1) has been suggested as a mathematical model for a variety of physical
problems. We shall not recall them: hiere, but refer to [1], where the very extensive literature
about the porous medium equation and some of its generalizations is summarized.

The existence and uniqueness of a nonnegative solution of (1) and (2) defined in some
weak sense, are well established ia (2], [3].

In this paper, we are interested in the behaviour of solution as i — co. Suppose that

H1: limiy|,o0 | 2 |%p(2) = 4,
H2: lims087Pf(8) = o,

where o is a positive constant. in {4/, it is shown that
1. Kp>m>1 and 0 <« < -2, then

p-m>
_L S
t7-Tu(z,t) — C'o ™ »-1
uniformly on sets of the form

{zre B Jz|<ath },a>0,t>0,
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‘where 8 = %"f;—’%l and C* = (p — 1)p+1_
2. p>m+ %,m > l,p_Lm < a < N and for every fixed w € RN |w |= 1,
satisfies
| %] ¢(z) |< B, forall z € RV,
. « _
,lg,r{,glzl p(l z | w) = Aw),
in which A(w) > 0 (# 0). Then

s -1
tvou(z,t) - h(zt %) as t — oo,

1 : . . .
uniformly on sets of the form {z € R";| z |< at7, a > 0}. Here h(§) is a positive solution
of the problem

Ahm+;1;e-Vh+$h:o, ¢e RV,

oo dim [ ETR(] €] w) = Aw).

[€]—o0

3. pr>m+%,m>1,a>N,then
t} | u(z,t) — Eg,(z,t) |- 0, as t— oo,

uniformly on sets of the form {z € R¥;| z |< at7v1—6}, a>0, where § =m —1+ %, E¢,
is the Barenblatt—Pattle solution with mass Cy and

Co=lely-[ [, fward

The authors of [4] conjecture that if m < p < m + %,m > l,a > -2 f(u) = u?,

p-m’
then L ‘
t»—1 | u(z,t) ~ U(z,t) |20 ast — oo

uniformly on sets of the form {z € RV;| z |< at%},a >0, where g=2(p-1)/(p—m),
and U(z,t) is the very singular solution of (1) (see [5]), i.e., a solution with the properties

Uy = AU™ — P in D'(s), (3)
UeCE\{(0,0)), U0 =0 ifz#£0 (1
lim <R U(z,t)dz = +co forevery R > 0. (5)

In this paper we give the proof of the conjecture in [4] for m > (1— %)*’ As a corollary,
the existence of very singular solution of (3) is proved, which is different to the method in

[5]-

2. The Proof of Theorem
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Definition A nonnegative function u € L*°(S) is called a generalized solution of (1),
(2), if u satisfies

[ [t + umac - feydzdt+ [ e(a)e(a,0dz =0, ©

for any ¢ € C%1(§) which vanishes for large | z | and ¢.

Theorem 1 Suppose that max{l,m} <p<m+E m>(1-#)",a> # and o, f
~ satisfy H1, H2. Then

t7-1 | u(z,t) —U(z,t) |—= 0 as t — o0

: 1
uniformly on sets of the form {z € RN;|z|< atf},a >0, where B=2(p—1)/(p— m),
and U 18 the very singular solution of equation

Uy = AU™ — oUP. (1)
We begin with some preliminary discussions.
Let u be the solution of (1) and (2). We consider the family of functions
ug = kP-Lmu(ka:, kPt).

It is a solution of the following problem

uy = Aum—kr_?:f(k_r_-a;u) in S, (8)
u(z,0) = kv_-z;qs(lcx) on RV, 9)

Below we shall denote by C the constants independent of k, although they may change
from line to line in the proof. Denote '

Br(zo) = {z;]z-=z0|<R},
Qr(zo0,t0) = Bgr(zo) x (to — R%,tp),
Sr = RN x(0,7).

In the following Lemmas, we assume uj € C%(§), otherwise, by the uniqueness of solution
of (8), (9) [6], we can consider the approximate problem, as in [7].

Lemma 1 For every r,t1,k > 0,u; satisfies

T
/ / u}dzdt < C.
t, Y Br(zo)
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Proof Let £ € CP(5),0< €< 1,6=1 on Br{zo) x (11,T). We multiply (8) by uro¢?
and integrate over St to obtain

ug(z,T) T 2
/ [ amagrde dz + / / k725 (5 7 ug) (up) ™€ 2dz dt
R 0 JRN ‘

N Jo
T " 2 Py
< [ Iver@metne e [ emeas] doa (10)
o Jrwv ! 0
Note that, by H2, there exists a constant d such thai if
k™ 7wy = u(kz, k1) < d,

then

) N 1
ke-m f(k™ p=mug) > 5”“7:'

Moreover, if
u(kz, kPt) > d,

we have also
k7o f (kT Fmug) > C(d)kom uP (kz, k1) = C(d)ul(z, 1).
Thus we have from (10)

Tr. ma+p o2 Y | . ot
_/0 jRS(uk) §%dzdt < C{/; [RN | V& |*(ui) dz dt

T
+ [ 16 ewmerizay. (11)

We choose £ = 4" in (12), where r = (am + p)/(am + p — max{ma + m,ma + 1}),0 <
Y < 1,9 € CP(S),¥ =1 on Bgr(zo) X (t1,T), to obtain

T
/ [ 0¥ ()™ P dz dt
0 RN

. T mat t
< 2r ma+p motp :f ma+p ——-:Lzz L
< Cx[L /I.iN " (ux) dz dt] ma+tr +Cl[f0 J/’;N Y2r(ug) dz dt)mo+s
T max{matm maitl
< arolf [ W etz an "R
0

This implies
T
/ / $* (u)™**Pdzdl < C.
o JRN

Thus Lemma 1 is proved. [

Lemma 2 Let Bg(zo) ¢ RN\ {0}. Then uy satisfies

T
_/ / (up)'dzdt < C for everv r < 0.
0 Bpr X

“4~’

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



*ow

Proof Let £(z) € C°(RY), 0 < € < 1,€ = 1if 2 € Bp(zo), suppé € RV \ {0}. We
multiply (8) by (u;)™*£¢? and integrate over RN x (0,T) to obtain

up(z,t) T '
o [ et asdes [ [k R ) et

T k?‘?ﬁw(kz)
/0 /RN | vg(z(uk)m“ﬂdmdw/m 52/0 T s™dgdz| .

Note that by H1 if k is large enough,

< C

Icv_—z;“go(ka:) <C on suppé.

Thus
le—l"Tcp(kz)
[ e / s™ds dz
N 0

Jr

is uniformly bounded for k. Hence using the analogous argument to Lemma 1, we can
prove Lemma 2.

Lemma 3 Lett; > 0. Then

sup u < C(ty). 12)
RN x(£1,T)

Proof Let £ € C°(Bg x (0,T)),0 < € < 1. We multiply (8) by £2(ux)™? -1 with
r > 1 and integrate over Bg X (to — R?,t) to obtain

¢ r
2 Pymer-1)+1 / 2 Vo™ 124z d
[, &nam) 2 [y €1V [z do

i t
S_ C{/ / | VE |2uimfdxds +/ / | f‘ l u?(zr-l)+ldz ds},
to~R2 JBg to—R? /Bp

where C does not depend on r.
Hence we have

.
sup fzu;‘n(z'~‘)+ldz+// | V(€ul)" |*dz dt
teto— R3¢ Br Qr
< o / / | Ve [Pud™ dpdt + / / | & | w04, gy, (13)
Qr Qr
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Using the embedding inequality [8, p.62, p.74], we have

/f (Eu?)""‘“ﬁ"%'*?nzﬁdz dt
Qr

IA

2
sup (euz*)”"”*dz} S [ 1Viery Fazar

C
to— R3<t<to Y Br

1+
C { sup (fu;”)"'l+#dz+//; | V(EuD)" |2d= dt}

to—R3<t<ty Y Br

2 2mr m(2r—-1)+1 1+Tfr‘
C, | V& [*uz™ dzdt + | & | uy dzdt . (14)
Qr Qr

We first consider the case when m < 1. Let

IA

IA

‘ 1 1 .
Rj:R(§+2J'T)’ 3=12,.--

and let §; € C’g(BRj X (to— R?,T)) with §; =1in @R,,,- Denote 1+ —127 by K and take
r such that 1 N
2r=(;n_——1)(?_1)+KJ) j=j0:j0+1)j0+2)"'a

where jp is a natural number such that '

1 N .

= 1y _ 3

(m 1)(2 1)+ K’ > 2.

From (14) we get

/ / (up) ¥R g gy
R4
ofY N(d_1)4Ki
< Sl pEE g
R QR’-
+ [ [ )Rty gy, (15)
(]
Let ujx = max{1,u,}. From (15) we obtain
./ / (ufy) ¥ G- 0HE g gy
Rj1

// (uz")g('nli‘l)‘*Kdea: dt + mes Qg
QR4

{c(R)¥ f /q (uf}) F (R g gy K
R;

IA

IA

The standard Moser’s iteration yields

N

supufy < C(R){ [ [ (ufh) ¥G1+K% g sy,
szl Qr
- 6 _
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Hence by Lemma 1, the Lemma 3 when m < 1 is proved.
If m>1,let 2r =1— L + K7 in (14) to obtain

[y azar
Qr

< {C% [/'/an(u;")l—'k+xjdxdt+//‘QRj(u;")Kj} 3.

Thus ;
Ll g+t 4 f _1l.ki
// (W)L K dzdtg{cﬁ// (W) A+ dp gy K
QR"+l QR,

The standard Moser’s iteration yields

sup i} < CLR) / /Q () R dzant,

Hence by Lemma 1, the Lemma 3 is proved.
Lemma 4 Let Br(zo) ¢ RV \ {0}. Then

sup ur <C. (18)
BR(Z())X (O,T)

Probf Let ¢(z) € C(RN),0 < € < 1,supp¢ ¢ RN\ {0}, =1 on Bg(zy). We
multiply (8) by fzu?(zr_l) with r > 1 to obtain

2. m(2r-1)+1 t/ £2 mr |2
./Rﬁf U (z,t)dz—i—/o ot | Vupr |*dz ds
t 2 . 2
< off [ 1VePuirrazdst [ @R pka) 0y (1)
o JrN RN
Since suppé © RN x {0}, by H1,if k is large enough, we have
k7= p(kz) < 1.
Hence we have from (17), if k is large enough,
t
m(2r—1)+1 2
o 52“):( r-1) (a:,t)dz—}—/; J[RN €2 Vulr |*dz ds
; :
< Cl/ / | V€ |*ulrdzds + Cy.
0 JRN

Thus we can use an analogous argument to Lemma 3 to obtain (16). O

Proof of Theorem 1 By Lemma 1 - Lemma 4, the solution u; is uniformly bounded
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for k on every compact set K of S\ (0,0). Thusif m > 1, by [9] there exists a subsequence
{ur;} and afunction U € C(S\(0,0) such that for every compact set K ¢ S\ (0,0)

ug; = U askj —» oo in C(K). (18)

If m < 1, by [10] there exists a subsequence {u,;} and a function U € C(S) such that
for every compact set K C S

Up; » U as K; - oo in C(K). (19)
We now prove U € C(S \ (0,0)) and U(z,0) =0 if z# 0. For zo # 0,t5 > 0 let

Q(xo,to) = {(:B,t);l T — Zg l< l—.’g—)—l,ﬂ <t< to}.

Since Q(zo,tp) is a compact set of S \ (0,0), by Lemma 4, there extsts a consatnt M
independent of k such that

sup u;y < M.
Q(zo,t0)

Let ¢ € C*(RN),9(z) > 0,9(z) = 2¢ if | z — 20 |< L’;—”l and g(z) =M if |z~ 2o |> j%.
We consider the Dirichlet problem

%% = Aw™ nQ(z¢, to), (20)
w(z,0) =g(z) in{z:z-20|< -I—rzi—l}, (21)
w(z,t) =M in {(z,t):|z—z0 |= l——:‘;2—0—1,,() <t<tg}. (22)

(20)-(22) have a unique solution w(z,t) € C*(Q(zo,%0)). Note that if & is large enough
k;gﬁp(k:c) <2 in{z:z—20]< |_9329_l}
By the comparasion theorem in (7], we have
ur < w(z,t) in Q(zo,tp)-
Hence let k — oo, to obtain

limsup U(z,t) < lim w(z,t) = 2¢.
(z,t)—~(z£0) ( ) (z:t)—(20,0) (z ) ‘

This implies

(x’t)l_{’rao,o) U(z,t) =0.
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Thus U € C(S \ (0,0)),U(z,0} = 0 if z # 0.Clearly J satisfies (7) in the sense of distri-
butions. We now prove :

lim { U(z,t)dz = oo for every R > 0.
t—0 Br

By H1, we can assume that

p(z) > ao>0 if |2]<Co.

Let
K (a+ bk 2 |)mT if |2|< S0, m> (1- 2),m#1
k _ —_ b H
¥z k) { akV exp{~1k% z |7} if |z |< é;n m=1;
Y(z,a,k) =0, if |z|> 99,
where b = fm—iﬁh T 0> bC2%,a > 0. From ;f—m > N, we have

k#(p(kz) > Y(z,a, k) if k large enough.
Let wgk be the solution of {(8) with initial
wak(z,0) = Y(z, a, k). (23)

By the Comparision Principle {7}, if k is large enough

Ug > Wak- | (24)
Note that 9
U(z,a,k) < Ea(xrk—Na): §=m—1+ N’
and
’a:,a,k\d:t:/ kN (a + bk?| 2 |*)moidx
fpu¥mabdz= [ N aroe|=P)
. 2
= a+blyHmidy, fm>(1-=), m#1,
JM(CO( Ly [)==tdy, ifm>(1~5)" m#
1
: _ N g Lo 12
/RN ¢»(z,a,k)dxﬂﬂz|<%nak exp{— k| z *}dz
FIRY
= / aexp{———}dy if m=1,
lvl<Co 4
where '
-1 (1-m)|z| T“—_ . _2\+
Ey(z,1) 6[a+2mmtﬁz] if m>(1-y§)"m#L
N .
at™ 7 exp{— t} ifm=1,
—_— 9 PR
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is the Barenblatt—Pattle solution of u; = Au™. By the Comparision Principle -
wak(z,t) < Ea(z,k™N° + ). (25)

Hence, as has been proved above, there exists a subsequence Wak, such that for every

compact set K c § \ (0,0)
Wak; — Wg a8 kj — oco.

The limit function w, is defined and continuous on $ \ (0,0) and by (26), (25)

wa < Euz,t). (26)
wa(z,t) < U(z,t). (27)

Moreover by the definition of solution for x € C(RN),x > 0
| /RN wak, (2, t)x(z)dz — /R , ¥z, k)x(z)dz |
I um R L B S S

Note that by (25)
’ k™ mway < kT rom By(z, kN 4 1),

Thus, if k — oo,

k’r—-z;w

_ 2
< KRN a4 (1-m)e] ] =0 i m AL,
2mN6(t + k- NO)~-
k—”__?;wak

< ak 7N Lexp{- Kl }—0, ifm=1

4(t+ k2) ’ '

By H2, if k is large enough, we have
koo f(k™ 7 omwey) < (6+ 1) EE(z,t + k= N9).
Hence if k; is large enough, we get from (25)-and (28)
[ /RN wak, (z,t)x(z)dz — /RN Y(z, a, k;)x(z)dz |

A [ 1B +0) + (54 1B o+ 1Y)

IA

~N§

t+k ’
C/(‘) +E; /};N [E(=,8) + (6+ 1) E%(z, s)|dz ds.

IA
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Letting k; — oo, if m # 1, we obtain

| [ el tx(@de—x@) [ (@t by "= Tay|

t
< c / / (E™ + E?)dz ds.
0 JRN

Thus | 1
L ,t dz = 0// a+b 2"_,,,_1‘1’
hm RN-wa(z )x(z)dz = x(0) IvI<C‘o( | y[ 1]
and by (27)
1
lim U(z,t)dz > lim wa(z,t)dz > / (c+b]y |27 1)dy.
t=0J)z|<r t—0J|z|<R [¥l<Co

Analogously, if m = 1 we have

ly|?

lim U(z,t)dz > lim we(z,t)dz > / aexp{———}dy.
R lvl<Co 4

t—0Jiz|<R t—=0Jiz|<

Thus if m > 1, letting a — oo, we get

lim U(z,t)dz := +oo.
t—=0/1z|<R

If m <1, we let a — 0 to obtian

lim U(z,t)dz = +oo.
t—0J|z|<R

Thus U(z,t) is a very singular solution of (7). By the uniqueness of Very singular solution
[11], for every compact set K c S\ (0,0),

ug(z,t) - U(z,t) as k— ooin C(K).
Set t =1 in (18) and (19). Then
u(z,1) = Kr—g;u(kz,kp) — U(z,1) as k — oo.
uniformly on compact subset of RY. Thus writing kz = z',k# = t' and dropping the
primes again, by U(:ct_%, 1) = t71 U(z,t) we get
tﬁu(z,t) — U(xt—%,l) = tFi—lU(x,t) as ¢t — oo

uniformly on sets
N 1
{ze R" :|z|<at?} a>0,
and Theorem 1 is proved. /

Remark Clearly, the proof of Theorem 1 gives a method to prove the existence of the
very singular solution of (7).
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