Boundedness of Littlewood-Paley Operators and Marcinkiewicz Integral on $\mathcal{E}^{\alpha,p}^*$

Qiu Sigang

(Dept. of Math., Beijing Normal Univ., China)

Abstract. In this paper, we shall show that if $f \in \mathcal{E}^{\alpha,p}$, then either g(f)(x) $(s(f)(x), g_{\lambda}^{*}(f)(x), \mu(f)(x)) < \infty$ almost everywhere, or g(f)(x) $(s(f)(x), g_{\lambda}^{*}(f)(x), \mu(f)(x)) = \infty$ almost everywhere. Furthermore, if g(f)(x) $(s(f)(x), g_{\lambda}^{*}(f)(x), \mu(f)(x)) < \infty$ almost everywhere, then g(f) $(s(f), g_{\lambda}^{*}(f), \mu(f)) \in \mathcal{E}^{\alpha,p}$ and there is a constant C independent of f and x, so that

$$||g(f)||_{\alpha,p} (||s(f)||_{\alpha,p}, ||g_{\lambda}^{*}(f)||_{\alpha,p}, ||\mu(f)||_{\alpha,p}) \leq C ||f||_{\alpha,p}.$$

§1. Introduction

As we know, Littlewood-Paley operators, Marcinkiewicz integral [5,6], play important role in the classical theory of harmonic analysis.

For $x \in \mathbb{R}^n$, y > 0, the Littlewood-Paley functions, g(f), $g_{\lambda}^*(f)$ and s(f) are defined by

$$g(f)(x) = \{\int_0^\infty y|\operatorname{grad}(f(x,y))|^2 dy\}^{\frac{1}{2}},$$
 $s(f)(x) = \{\int\int_{\Gamma(x)} y^{1-n}|\operatorname{grad}(f(x,y))|^2 dz dy\}^{\frac{1}{2}},$ $g_\lambda^*(f)(x) = \{\int\int_{R_\lambda^{n+1}} (y/(y+\mid z-x\mid))^{\lambda n} y^{1-n}|\operatorname{grad}(f(z,y))\mid^2 dz dy\}^{\frac{1}{2}} \ (\lambda > 1).$

Where f(x,y) is the Poisson integral of f and $\Gamma(x) = \{(z,y) \in \mathbb{R}^{n+1}_+ : |z-x| < y\}$. The Marcinkiewicz integral is defined by

$$\mu(f)(x) = \{ \int_0^\infty [|F(x,t)||^2/t^3] dt \}^{\frac{1}{2}},$$

where

$$F(x,t) = \int_{|y| \le t} \left[\Omega(y) / |y|^{n-1} \right] f(x-y) dy,$$

^{*}Received June 9, 1990.

and Ω satisfies the following two conditions:

- (1). Ω is continuous on s^n (s^n is the unit sphere in R^n), and satisfies a Lipschitz condition of order m, (0 < m < 1), $\Omega(tx) = \Omega(x)$ $(x \neq 0, t > 0)$.
 - (2). $\int_{s^n} \Omega(x') ds^n = 0.$

Let us recall that a locally integrable function $f(x), x \in \mathbb{R}^n$, belongs to $\mathcal{E}^{\alpha,p}$ $(1 \le p < \infty, -n/p \le \alpha < 1)$ (see [1] & [7]), if there is a constant C, such that for every cube Q,

$$\int_{Q} |f(x) - f_{Q}|^{p} dx \leq C |Q|^{1+\alpha p/n}, \qquad (1)$$

where $f_Q = (1/|Q|) \int_Q f(x) dx$.

The smallest constant $C^{1/p}$ for which C satisfies (1) is called the $\mathcal{E}^{\alpha,p}$ norm of f and is denoted by $||f||_{\alpha,p}$, i.e.,

$$||f||_{\alpha,p} = \inf\{C^{1/p}: C \text{ satisfies (1)}\}.$$
 (2)

In this paper, we prove the following theorems.

Theorem 1 Let $f \in \mathcal{E}^{\alpha,p}$ $(\alpha \neq 0, 1 , then either <math>g(f)(x) = \infty$ a.e., or $g(f)(x) < \infty$ a.e. $x \in \mathbb{R}^n$ and there is a constant C independent of f, such that

$$||g(f)||_{\alpha,p} \leq C||f||_{\alpha,p}$$
.

Theorem 2 Let $f \in \mathcal{E}^{\alpha,p}$ $(\alpha \neq 0, 1 , then either <math>s(f)(x) = \infty$ a.e., or $s(f)(x) < \infty$ a.e. $x \in \mathbb{R}^n$ and there is a constant C independent of f, such that

$$||s(f)||_{\alpha,p} \leq C||f||_{\alpha,p}.$$

Theorem 3 Let $f \in \mathcal{E}^{\alpha,p}$ $(\alpha \neq 0, 1 \max(1,2/p)$, then either $g(f)(x) = \infty$ a.e., or $g(f)(x) < \infty$ a.e. $x \in \mathbb{R}^n$ and

$$\parallel g_{\lambda}^{*}(f) \parallel_{\alpha,p} \leq C \parallel f \parallel_{\alpha,p},$$

where C is a constant independent of f.

Theorem 4 Let $f \in \mathcal{E}^{\alpha;p}$ $(\alpha \neq 0, 1 and <math>-n/p \leq \alpha < \min(1/2, m)$, then either $\mu(f)(x) = \infty$ a.e., or $\mu(f)(x) < \infty$ a.e. $x \in \mathbb{R}^n$ and

$$\|\mu(f)\|_{\alpha,p}\leq C\|f\|_{\alpha,p},$$

where C is a constant indepent of f.

For the case of $\alpha = 0$, $\mathcal{E}^{\alpha,p} = BMO$, D.S. Kurtz [2], Wang [3] and Han [4] have obtained the similar results.

We also use χ_E to denote the characteristic function of the measurable set E, and for a cube Q, dQ stands for another cube concetric with Q and having edge length d times as

long. Also, C denotes some constants which are independent of f and may change from line to line.

§2. The Key Lemma

Observing the proof of the main theorems in [2], [3] & [4], the authors all used an important Lemma [2, Lemma 1.1, p.659] and its special cases.

Here, in order to prove the theorems, we prove the following

Lemma Let $f \in \mathcal{E}^{\alpha,p}$ ($\alpha \neq 0, 1) and <math>Q$ is a cube in \mathbb{R}^n centered at \bar{x} and having edge length r, for a given real positive number d, suppose that $\alpha < d$, then there is a constant C depending only on n, p, α and d so that for any arbitrary y > 0,

$$\int_{R^n} \frac{|f(x) - f_Q|}{y^{n+d} + |x - \bar{x}|^{n+d}} dx \le C y^{-d} (y^{\alpha} + r^{\alpha}) ||f||_{\alpha, p}.$$
 (3)

In particular,

$$\int_{R^n} \frac{|f(x) - f_Q|}{r^{n+d} + |x - \bar{x}|^{n+d}} dx \leq C r^{\alpha - d} ||f||_{\alpha, p}, \tag{4}$$

$$\int_{R^n} \frac{|f(x) - f_{Q_0}|}{1 + |x|^{n+d}} dx \le C ||f||_{\alpha,p},$$
 (5)

where Qo is the unit cube.

Proof Arguing as in [1], we can easily obtain the special cases of the Lemma (4) and (5).

Now, our main task is to prove (3).

At first, we claim that if R is a cube having the same center \bar{x} and edge length y; then

$$| f_R - f_Q | \leq C(y^{\alpha} + r^{\alpha}) || f ||_{\alpha,p}.$$
 (6)

In fact, if $y \ge r$, we can choose nonnegative integer k such that $2^k r \le 2^{k+1} r$, write $Q(j) = 2^j Q$, Q(0) = Q, $(j = 1, 2, \cdots)$, then

$$| f_{R} - f_{Q} | \leq (1/|R|) \int_{R} | f(x) - f_{Q} | dx$$

$$\leq (1/|R|) \int_{Q_{(k+1)}} | f(x) - f_{Q} | dx$$

$$\leq (1/|R|) \left[\int_{Q_{(k+1)}} | f(x) - f_{Q(k+1)} | dx + | Q(k+1) | | f_{Q(k+1)} - f_{Q} \right] |$$

$$\leq (1/|R|) \int_{Q_{(k+1)}} | f(x) - f_{Q(k+1)} | dx + | Q(k+1) | \sum_{j=1}^{k+1} | f_{Q(j-1)} - f_{Q(j)} |$$
(7)

but

$$\int_{Q(k+1)} |f(x) - f_{Q(k+1)}| dx$$

$$\leq |Q(k+1)|^{1-1/p} \left(\int_{Q(k+1)} |f(x) - f_{Q(k+1)}|^p dx \right)^{1/p}$$

$$\leq |Q(k+1)|^{1-1/p} |Q(k+1)|^{1/p+\alpha/n} ||f||_{\alpha,p}$$

$$\leq |Q(k+1)|^{1+\alpha/n} ||f||_{\alpha,p}$$

$$\leq C||f||_{\alpha,p} (2^k r)^{n+\alpha} \tag{8}$$

and

$$|f_{Q(j)} - f_{Q(j-1)}|$$

$$\leq \frac{1}{|Q(j-1)|} \int_{Q(j)} |f(x) - f_{Q(j)}| dx$$

$$\leq C \frac{1}{|Q(j)|} \int_{Q(j)} |f(x) - f_{Q(j)}| dx$$

$$\leq C \frac{1}{|Q(j)|} \int_{Q(j)} |f(x) - f_{Q(j)}|^{p} dx^{1/p}$$

$$\leq C |Q(j)|^{-1/p} |Q(j)|^{1/p + \alpha/n} ||f||_{\alpha,p}$$

$$\leq C |Q(j)|^{\alpha/n} ||f||_{\alpha,p}$$

$$\leq C |f||_{\alpha,p} (2^{j}r)^{\alpha}.$$

$$(9)$$

By (9), we have

$$\sum_{j=1}^{k+1} |f_{Q(j)} - f_{Q(j-1)}|$$

$$\leq C \|f\|_{\alpha,p} r^{\alpha} \sum_{j=1}^{k+1} 2^{j\alpha}$$

$$\leq C \|f\|_{\alpha,p} (2^{k}r)^{\alpha}$$

$$\leq C y^{\alpha} \|f\|_{\alpha,p}, \qquad (10)$$

and

$$\sum_{j=1}^{k+1} |f_{Q(j)} - f_{Q(j-1)}| \le Cr^{\alpha} ||f||_{\alpha,p}, \text{ for } \alpha < 0.$$
 (11)

Combining of (7), (8), (9), (10) and (11) yields that for $\alpha > 0$,

$$| f_{R} - f_{Q} | \leq C y^{-n} [(2^{k} r)^{n+\alpha} + (2^{k} r)^{n} (2^{k} r)^{\alpha}] || f ||_{\alpha,p}$$

$$\leq C y^{-n} (2^{k} r)^{n+\alpha} || f ||_{\alpha,p} \leq C y^{-n} y^{n+\alpha} || f ||_{\alpha,p}$$

$$\leq C y^{\alpha} || f ||_{\alpha,p} , \qquad (12)$$

and for $\alpha < 0$,

$$| f_{R} - f_{Q} | \leq C y^{-n} [(2^{k}r)^{n+\alpha} + (2^{k}r)^{n}r^{\alpha}] || f ||_{\alpha,p}$$

$$\leq C y^{-n} [y^{n+\alpha} + y^{n}r^{\alpha}] || f ||_{\alpha,p}$$

$$\leq C (y^{\alpha} + r^{\alpha}) || f ||_{\alpha,p} .$$
(13)

From (12) and (13), (5) is immediate.

By (6), (4) and noticing that $\int_{\mathbb{R}^n} [1/(y^{n+d} + |x - \bar{x}|^{n+d})] dx \le cy^{-\alpha}$, then

$$\int_{R^{n}} \frac{|f(x) - f_{Q}|}{y^{n+d} + |x - \bar{x}|^{n+d}} dx \leq \int_{R^{n}} \frac{|f(x) - f_{R}|}{y^{n+d} + |x - \bar{x}|^{n+d}} dx + |f_{R} - f_{Q}| \int_{R^{n}} \frac{1}{y^{n+d} + |x - \bar{x}|^{n+d}} dx \\ \leq Cy^{\alpha-d} ||f||_{\alpha,p} + Cy^{-d}(y^{\alpha} + r^{\alpha}) ||f||_{\alpha,p} \\ \leq Cy^{-d}(y^{\alpha} + r^{\alpha}) ||f||_{\alpha,p}.$$

The proof is complete. \square

Remark If d = 1, then

$$\int_{R^n} [| f(x) - f_{Q_o} | /(1 + | x |^{n+1})] dx \le C || f ||_{\alpha,p} ,$$

it follows that $\int_{\mathbb{R}^n} [|f(x)|/(1+|x|^{n+1})]dx < \infty$, which is equivalent to the finiteness of the Possion integral f(x,y), y > 0, of f.

§3. The Proof of the Theorems

Just as stated in the beginning of Section 2, the proof of the main theorems in [2], [3] & [4] depend closely on the Lemma in [2, p659] and its special forms.

In the proof of our theorems, we repeat the argument of the proof of the corresponding theorems in [2], [3] & [4], and use the Lemma in Section 2 instead of the Lemma in [2, Lemma 1.1, p659]. We only give the proof of Theorems 2 and 3, but not state all the details. For the proof of other theorems in this paper, we can do in a similar way.

Let Tf be an s-function s(f) or g_{λ}^* -function $g_{\lambda}^*(f)$ ($\lambda > \max(1, 2/p)$), suppose that $|\{Tf \neq \infty\}| > 0$, let \underline{x} be a density point of $E = \{x : Tf(x) < \infty\}$ and Q be any cube centered at \underline{x} , write f as

$$f(x) = f_Q + [f(x) - f_Q]x_Q + [f(x) - f_Q]\chi_{cQ} = f_Q(x) + g_Q(x) + h_Q(x).$$

Clearly, $Tf_Q = 0$. Since $f \in \mathcal{E}^{\alpha,p}$ (1 ,

$$\|g_{Q}\|_{p} = (\int_{Q} |f(t) - f_{Q}|^{p} dt)^{\frac{1}{p}}$$

$$\leq C |Q|^{\frac{1}{p} + \frac{\alpha}{n}} \|f\|_{\alpha, p}, \qquad (14)$$

where $Q \in L^p$.

Just like the proof in [2], the main work we need to do is to prove that for sufficiently small d depending only on n, there is a constant C depending only on n, α and $p(\lambda)$ so that for all $x \in dQ$

(i) $Th_Q(x') < \infty \Longrightarrow Th_Q(x) < \infty$,

(ii) $|Th_Q(x) - Th_Q(x')| \le Cr^{\alpha} ||f||_{\alpha,p}$, where r is the edge lendgth of Q.

Assume that (i) and (ii) are proved, arguing as in [2], we see that Tf is finite almost everywhere, and we need only to show that

$$||Tf||_{\alpha,p} \leq C||f||_{\alpha,p}.$$

Let Q' be any cube in R^n and Q = (1/d)Q' (Q' = dQ), choose a point $x' \in dQ$ so that $Th_Q(x') < \infty$. Then, by (14) and (ii),

$$\left(\int_{Q'} |Tf(x) - Th_{Q}(x')|^{p} dx \right)^{1/p}$$

$$= \left(\int_{Q'} |T(g_{Q} + h_{Q})(x) - Th_{Q}(x) + Th_{Q}(x) - Th_{Q}(x')|^{p} dx \right)^{1/p}$$

$$\leq \left(\int_{Q'} |Tg_{Q}(x)|^{p} dx \right)^{\frac{1}{p}} + \int_{Q'} |Th_{Q}(x) - Th_{Q}(x')|^{p} dx \right)^{1/p}$$

$$\leq C ||g_{Q}||_{p} + C ||Q'||^{1/p} r^{\alpha} ||f||_{\alpha,p}$$

$$\leq C ||Q||^{1/p + \alpha/n} ||f||_{\alpha,p} + C ||Q||^{1/p} ||Q||^{\alpha/n} ||f||_{\alpha,p}$$

$$\leq C ||Q||^{1/p + \alpha/n} ||f||_{\alpha,p} .$$

Thus

$$\int_{Q'} |Tf(x) - Th_Q(x')|^p dx \leq C|Q|^{1+\alpha p/n} ||f||_{\alpha,p}^p,$$

this implies that $\parallel Tf \parallel_{\alpha,p} \leq C \parallel f \parallel_{\alpha,p}$, the proof is complete.

Theorems 2 and 3 are proved modulo the results of the following Claims 1 and 2.

Claim 1 Suppose that $f \in \mathcal{E}^{\alpha,p}$ ($\alpha \neq 0, 1). Let <math>Q$ be a cube with center \underline{x} and edge length r. Set $d = 1/(8\sqrt{n})$. If there is $x' \in dQ$ so that $s(h_q)(x') < \infty$. Then there is a constant C depending only on n, α and p, such that $s(h_Q)(x) < \infty$ and

$$\mid s(h_Q)(x) - s(h_Q)(x') \mid \leq Cr^{\alpha} \parallel f \parallel_{\alpha,p}$$
, for all $x \in dQ$.

Claim 2 Suppose that $f \in \mathcal{E}^{\alpha,p}$, $(\alpha \neq 0, 1 and <math>\lambda > \max(1,2/p)$. Q and d stated as in Claim 1. If there is $x' \in dQ$ such that $g_{\lambda}^*(h_Q)(x') < \infty$. Then there is a constant C depending only on n, α, λ and p, such that $g_{\lambda}^*(h_Q)(x) < \infty$ and

$$\mid g_{\lambda}^{*}(h_{Q})(x) - g_{\lambda}^{*}(h_{Q})(x') \leq Cr^{\alpha} \mid \mid f \mid \mid_{\alpha,p}$$
, for all $x \in dQ$.

3.1. Proof of the Claims

Arguing as in [2, Lemma 2.1], we have

$$s(h_Q)(x) \leq s^- + s^+, x \in dQ,$$

where

$$s^- = (\int\!\int_{\Gamma(x)^-} y^{1-n} |\operatorname{grad}(h_Q(z,y))|^2 dz dy)^{\frac{1}{2}},$$
 $\Gamma(x)^- = \{(z,y) \in \Gamma(x) : y \leq dr\}$

and

$$s^+ = (\int \int_{\Gamma(z)^+} y^{1-n} |\operatorname{grad}(h_Q(z,y))|^2 dz dy)^{\frac{1}{2}},$$
 $\Gamma(x)^+ = \{(z,y) \in \Gamma(x) : y > dr\}.$

Estimate s^- and s^+ as in [2] and use the Lemma in Section 2, we have

$$s^{-} \leq C \left(\int \int_{\Gamma(x)^{-}} y^{1-n} \left(\int_{eQ} \frac{|f(x) - f_{Q}|}{|t - \underline{x}|^{n+1} + r^{n+1}} dt \right)^{2} dz dy \right)^{\frac{1}{2}}$$

$$\leq C \left(\int_{0}^{dr} \int_{\{|z - x| < y\}} y^{1-n} r^{-2} r^{2\alpha} ||f||_{\alpha, p}^{2} dz dy \right)^{\frac{1}{2}}$$

$$\leq C r^{\alpha} ||f||_{\alpha, p}$$

and

$$s^{+} \leq s(h_{Q})(x') + C(\int \int_{\Gamma(x)^{+}\backslash\Gamma(x')} y^{1-n} (\int_{eQ} \frac{|f(t) - f_{Q}|}{|t - \underline{x}|^{n+1} + y^{n+1}} dt)^{2} dz dy)^{\frac{1}{2}}$$

$$\leq s(h_{Q})(x') + C(\int \int_{\Gamma(x)^{+}\backslash\Gamma(x')} y^{1-n} y^{-2} (y^{\alpha} + r^{\alpha})^{2} ||f||_{\alpha,p}^{2} dz dy)^{\frac{1}{2}}$$

$$\leq s(h_{Q})(x') + C||f||_{\alpha,p} (\int_{dr}^{\infty} ry^{-2} (y^{2\alpha} + r^{2\alpha}) dy)^{\frac{1}{2}}$$

$$\leq s(h_{Q})(x') + Cr^{\alpha} ||f||_{\alpha,p}.$$

Therefore,

$$s(h_Q)(x) \leq s(h_Q)(x') + Cr^{\alpha} || f ||_{\alpha,p} ,$$

thus

$$s(h_Q)(x) < \infty$$
 for all $x \in dQ$.

Reversing the roles of x and x', we get

$$|s(h_Q)(x)-s(h_Q)(x')| \leq Cr^{\alpha}||f||_{\alpha,p}$$
 for all $x \in dQ$.

Claim 1 is true.

3.2 Proof of Claim 2

Arguing as in [2, Lemma 2.2], we have $g_{\lambda}^{*}(h_{Q})(x)$ $(x \in dQ)$ is bounded by the sum of

$$G^{-} = (\int\!\!\int_{J(0)} (rac{y}{y+\mid x-z\mid})^{\lambda n} y^{1-n} |\operatorname{grad}(h_Q(z,y))|^2 dz \, dy)^{rac{1}{2}}$$

and

$$G^{+} == \left(\int \int_{R_{+}^{n+1} \setminus J(0)} \left(\frac{y}{y + \mid x - z \mid} \right)^{\lambda n} y^{1-n} | \operatorname{grad}(h_{Q}(z, y)) |^{2} dz dy \right)^{\frac{1}{2}},$$

where $J(k) = \{(z, y) \in R_+^{n+1} : |z - \underline{x}| < 2^{k-2}r \text{ and } 0 < y < 2^{k-2}r\}$ for $k \ge 0$. Repeating the argument of the estimates for G^- and G^+ as in [2], we have

$$G^{-} \leq C\left(\int\int_{J(0)} \left(\frac{y}{y+\mid x-z\mid}\right)^{\lambda n} y^{1-n} \left(\int_{cQ} \frac{\mid f(t)-f_{Q}\mid}{\mid t-\underline{x}\mid^{n+1}+r^{n+1}} dt\right)^{2} dz dy\right)^{\frac{1}{2}}$$

$$\leq C\left(\int_{0}^{r} \int_{\{\mid z-x\mid

$$\leq Cr^{\alpha} \|f\|_{\alpha,p}^{2},$$$$

$$G^+ \leq g_{\lambda}^*(h_Q)(x') + \tau,$$

while

$$\tau \leq C(\sum_{k=1}^{\infty} 2^{-k} (2^k r)^{-\lambda n} \int \int_{J(k) \setminus J(k-1)} y^{\lambda n+1-n} |\operatorname{grad}(h_Q(z,y))|^2 dz \, dy)^{\frac{1}{2}}.$$

Without loss of generality we may also assume $1 < \lambda < 2$. In this case,

$$\tau \leq C(\sum_{k=1}^{\infty} 2^{-k} (2^k r)^{-\lambda n} (A_k + B_k))^{\frac{1}{2}},$$

where

$$A_{k} = \int \int_{J(k)} y^{\lambda n+1-n} \left(\int_{cQ(k+1)} \frac{|f(t)-f_{Q}|}{|t-z|^{n+1}+y^{n+1}} dt \right)^{2} dz dy,$$

$$B_{k} = \int \int_{J(k)} y^{\lambda n+1-n} \left(\int_{Q(k+1)\backslash Q} \frac{|f(t)-f_{Q}|}{|t-z|^{n+1}+y^{n+1}} dt \right)^{2} dz dy.$$

By the same reason as in [2],

$$A_{k} \leq C \int \int_{J(k)} y^{\lambda n+1-n} \left(\int_{cQ(k+1)} \frac{|f(t)-f_{Q}|}{|t-x|^{n+1}+(2^{k}r)^{n+1}} dt \right)^{2} dx dy$$

$$\leq C \int_{0}^{2^{k}r} \int_{\{|z| \leq 2^{k}r\}} y^{\lambda n+1-n} \left((2^{k}r)^{-1} (r^{\alpha}+(2^{k}r)^{\alpha}) ||f||_{\alpha,p} \right)^{2} dz dy$$

$$\leq C (2^{k}r)^{\lambda n} (1+2^{2^{k\alpha}})^{r^{2\alpha}} ||f||_{\alpha,p},$$

and

$$B_k \leq C(\int_{Q(k+1)\backslash Q} |f(t) - f_Q|^{2/\lambda} dt)^{\lambda}.$$

Let $q = 2/\lambda \ge 1$, then $1 \le q \le p$,

$$(\int_{Q(k+1)} |f(t) - \tau_{Q}|^{q} dt)^{1/q} \leq (\int_{Q(k+1)} |f(t) - f_{Q(k+1)}|^{q} dt)^{1/q}$$

$$+ |Q(k+1)|^{1/q} \cdot |f_{Q(k+1)} - f_{Q}|$$

$$\leq |Q(k+1)|^{1/q} \cdot |f_{Q(k+1)} - f_{Q}|$$

$$+ |Q(k+1)|^{1/q-1/p} (\int_{Q(k+1)} |f(t) - f_{Q(k+1)}|^{p} dt)^{1/p}$$

$$\leq C(2^{k}r)^{n(1/q-1/p)} (2^{k}r)^{\alpha+n/p} ||f||_{\alpha,p}$$

 $+C(2^kr)^{n/q}((2^kr)^\alpha+r^\alpha)\|\ f\ \|_{\alpha,p}$

$$\leq Cr^{\alpha} \| f \|_{\alpha,p} \cdot (2^k r)^{n/q} ((2^k)^{\alpha} + 1),$$

this implies

$$B_k = Cr^{2\alpha} \| f \|_{\alpha,p}^2 (2^k r)^{2n/q} (2^{k\alpha} + 1)^2$$

$$\leq Cr^{2\alpha} \| f \|_{\alpha,p}^2 (2^k r)^{n\lambda} (1 + 2^{2k\alpha}).$$

Thus,

$$|A_k + B_k \le Cr^{2\alpha} ||f||_{\alpha,p}^2 (2^k r)^{n\lambda} (1 + 2^{2k\alpha}).$$

Since $\alpha < 1/2$,

$$\tau \leq C(\sum_{k=1}^{\infty} 2^{-k} (1 + 2^{2k\alpha}) r^{2\alpha} \| f \|_{\alpha,p}^{2})^{\frac{1}{2}}$$

$$\leq Cr^{\alpha} \| f \|_{\alpha,p} (\sum_{k=1}^{\infty} 2^{-k} + \sum_{k=1}^{\infty} 2^{-k(1-2\alpha)})^{\frac{1}{2}}$$

$$\leq Cr^{\alpha} \| f \|_{\alpha,p}.$$

Therefore,

$$g_{\lambda}^{\star}(h_Q)(x) \leq g_{\lambda}^{\star}(h_Q)(x') + Cr^{\alpha} \| f \|_{\alpha,p} ,$$

and $g_{\lambda}^*(h_Q)(x) < \infty$ for all $x \in dQ$.

Reversing the roles of x and x', we can obtain

$$\mid g_{\lambda}^{*}(h_{Q})(x) - g_{\lambda}^{*}(h_{Q})(x') \mid \leq Cr^{\alpha} \parallel f \parallel_{\alpha,p}.$$

This ends the proof of Claim 2. \square

Supplementary Remark: This paper is one part of the author's thesis [9] for Master's Degree completed in August, 1988. Recently, [10] gave the similar results about the "Boundedness of the Littlewood-Paley g-function on $\operatorname{Lip}_{\alpha}(R^n)$ (0 < α < 1) (i.e., $\mathcal{E}^{\alpha,p}$ (R^n))", but it did not consider the case for other Littlewood-Paley functions presented here.

Acknowledgement: The author is indebted to Prof. Lu Shanzhen for his guidance, and to Prof. Deng Donggao and Associate Prof. Li Qiongyao for their help.

References

- [1] F.B. Fabes, R.L. Janson & U. Neri, Spaces of harmonic functions representable by Poisson integral of functions in BMO and $\mathcal{L}_{p,\lambda}$, Indiana Univ. Math. J., 25(2)(1976), 159-170.
- [2] D.S. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc., 99(1987), 657-666.
- [3] S. Wang, Some Properties of the Littlewood-Paley g-function, Scientia Sinica, (A seris),9(1984), 890-899.
- [4] Han Yongsheng, Some properties of s-function and Marcinkiewicz integrals, Acta Scientitarum Naturalium Univ., Pekingniss 5(1987), 21-34.
- [5] E.M. Stein, Singular Integrals and Differentiability Properties of Function, Princeton Univ. Press, Princeton, N.J., 1970.
- [6] E.M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Tran. Amer. Math. Soc., 88(1958), 430-466.
- [7] J. Peetre, On the theory of $\mathcal{L}^{p,\lambda}$ spaces, J. Functional Anal., 4(1969), 71-87.
- [8] D.S. Kurtz, Rearrangement inequalities for Littelwood-Paley operators, Math. Nachr., 133(1987), 71-90.
- [9] Qiu Sigang, Graduate Thesis for Master's Degree, Qufu Normal University, 1988.
- [10] Shilin Wang, Boundedness of the Littlewood-Paley g-function on $Lip_{\alpha}(R^n)$ (0 < α < 1), Illinois J. Math., 33(4)(1989), 531-541.

Littlewood—Paley 算子及 Marcinkiewicz 积分 在 Campanato 空间 $\varepsilon^{\alpha, \gamma}$ 上的有界性

邱 司 纲 (北京师范大学数学系,100875)

我们证明了下述结果:若 $f \in e^{a,p}$,则适当限制参数值时,有 $g(f)(x)(S(f)(x),g_{\lambda}^{*}(f)(x),\mu$ (f)(x)) $< \infty$ a. e. ,或者 $g(f)(x)(S(f)(x),g_{\lambda}^{*}(f)(x),\mu$ $(f)(x),\mu$ $< \infty$ a. e. ,并且在前者成立时,有 $g(f)(S(f),g_{\lambda}^{*}(f),\mu$ $(f)\in e^{a,p}$,以及 $\|g(f)\|_{a,p}$,($\|S(f)\|_{a,p}$, $\|g_{\lambda}^{*}(f)\|_{a,p}$, $\|\mu$ ($f)\|_{a,p}$) $\leq C$ $\|f\|_{a,p}$,其中 C 为不依赖于 f 的常数.