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Abstract. In this paper, we shall show that if f € &£%P, then either

g((=z)  ((N)(=), ox(F)(=), u(£)(z)) < o0 almost everywhere, or
9(F)(z) (s(f)(z), gx(f)(z), u(f)(z)) = oo almost everywhere. Furthermore, if

g(f)(a:) (S(f)(z),gi(f)(z),u(f)(z)) < o0 almost everywhere,
then g(f) (s(f),g3(f), 1(f)) € £*P and there is a constant C independent of f

and z, so that

190 Nap (Nl 8(5) llapr | 93(S) Napr 11 (S) Mo} < Cll S Nl

§1. Introduction

As we know, Littlewood-Paley operators, Marcinkiewicz integral [5,6], play important
role in the classical theory of harmonic analysis.
For z € R",y > 0, the Littlewood-Paley functions, g(f),¢;(f) and s(f) are defined by

s(N@ = ([ ol srad(s(z,9) Py},
(1)) = [ [ vl radls(e,) Pz ap,

HUNE ={[ [ W/t 22" grad(f(z,)) [Fdzdypt (> 1)

Where f(z,y) is the Poisson integral of f and I'(z) = {(z,y) € R}*' :| z— z |< y}. The
Marcinkiewicz integral is defined by

w(N)@ = {1 Fep) P/,

where

Fz,)= | [8@)/lyI"] f(z - v)dy,
‘ lvl<t
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and 2 satisfies the following two conditions:

(1). 0 is continuous on s" (s" is the unit sphere in R"), and satisfies a Lipschitz
condition of order m, (0 < m < 1), Q(tz) = Q(z) (z #0,t > 0).

(2). [,-Q(z')ds*=0

Let us recall that a locally integrable function f(z),z € R™, belongs to £*? (1< p <
00,—n/p < a < 1) (see [1] & [7]), if there is a constant C, such that for every cube Q,

/Q | f(=) - fq [Pdz < C| Q [P/, (1)

where fg = (1/|Q |) g f(z)dz.
The smallest constant C/ P for which C satisfies (1) is called the £ *? norm of f and

is denoted by || f ”ap’

| £ llq, =inf{C*P: C satisfies (1)}. (2)
In this paper, we prove the following theorems. ’

Theorem 1 Letf € £*P (a# 0,1 <p<oo,—n/p< a<1/2), then either g(f)(z) =
a.e., or g(f)(z) < 0o a.e. z € R™ and there is a constant C independent of f, such that

19(£) llap < Cll f llap

Theorem 2 Let f € £*P (a# 0,1 < p<o0o,—n/p < a < 1/2), then either s(f)(z) =
a.e., or 8(f)(z) < 0o a.e. z € R™ and there is a constant C independent of f, such that

| 8(F) llap < Cll f Ilap

Theorem 3 Let f€£*P (a#0,1<p<oo,—n/p < a<1/2), A > max(1,2/p), then
esther g(f)(z) = oo a.e., or g(f)(z) < o0 a.e. z € R™ and

| G3(f) llap £ Cll £ Nlaps

where C 13 a constant independent of f.

Theorem 4 Let f€ £ (a#0,1 <p < o0) and —n/p < a < min(1/2, m), then either
p(f)(z) = o0 a.e., or u(f)(z) < 00 a.e. z€ R™ and

I () lleap < Cll S Nl o

where C 138 a constant indenpent of f.

For the case of a = 0, £ =BMO, D.S. Kurtz [2], Wang [3] and Han [4] have obtained
the similar results. '

We also use xg to denote the characteristic function of the measurable set E, and for
a cube Q, dQ stands for another cube concetric with.Q and having edge length d times as



long. Also, C denotes some constants which are independent of f and may change from
line to line.

§2. The Key Lemuma

Observing the proof of the main theorems in [2], [3] & [4], the authors all used an important
Lemma [2, Lemma 1.1, p.659] and its special cases.
Here, in order to prove the theorems, we prove the following

Lemma Let fe %P (a#0,1<p<oo,—n/p<ac<l)andQ isa cube in R™ centered
at & and having edge length r, for a given real positive number d, suppose that o < d, then
there 18 a constant C depending only on n,p,a and d so that for any arbitrary y > 0,

[ e SR R A ©

..yn+d+,x__5’n+d

In particular,

L | f(!:) - fq | dr '5 Cra—d“ f ”a.p’ (4)

..,.n+d+lz_,—:|n+3

| f(=) — fq | :
[ e 4 <O o ©
where Q. ts the unit cube.

Proof Arguing as in [1], we can easily obtain the special cases of the Lemma (4) and

(5).
Now, our main task is to prove (3).
At first, we claim that if R is a cube having the same center Z and edge length y, then

| frR— IQ IS C(ya + ra)” f ”a,p‘ (6)

In fact, if y > r, we can choose nonnegative integer k such that 2¥r < 281y write
b

QU =2Q, )=, (= 1,2,-.),then
== fa|<(/IRD [ 17@) - fodz

< (1/1Rn/q( 1) - 1o | ¢z
. k+1
< (1/|R)) | () — feesr) | dat | Qk+1) | | fow+y) — fal |
Q1)
k+1 .
< (1/|Rl)f | f(z) — fque+ry | dz+ | Q(k+1) | D | fqii-1 — faiy | (7).
‘IQ(I:+1) j=1
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but

— dz
Jopprn 1 7) = faterny 1 do

B 1/p
< QU+ P ([ 1 1(0) - foen i)
< |QUk+1) "M Qk+1) MRre 11,
< QU+ ™™ £ gy
< Ol f llap@n)™ " 8)

and

| fo) — faii-n |

1
< - —fop 1 d
i 'Q(]_l)l Q(])If(x) fQ(J); z
1
< Cr—5 - )| d
S OTQ0) T Jagy )~ faun 1 4
< Cor— [ | 1)~ foiy IPd M
= “Te@ e o0 heE
< ClRWITPIQU) MP*e/™| £ o
< QW) I*™ f lla,
< O f o (27r)" (9)
By (9), we have
k+1
> 1 fat) — fat-n |
i=1
k+1 .
S O f llgp r D2
j=1
< Ol S gy (2%
< CY fllay (10)
and
k+1
2 | fat) = fai-1) 1< Cr®|| £ |lop » for @ < 0. (11)
=1

Combining of (7), (8), (9), (10) and (11) yields that for o > 0,

| fr—fq| < Cy™[(@n)™ + (2*)"(2*)| 1 |,
< Oy @)™ f lap SOV S
< C¥|I S lay (12)

— 44 —
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and for a < 0,

Cy™™[(2* )™ + 25"l £
Cy™"ly" ™ +y" ||l f llap
Cly* +rN fllayp - (13)

From (12) and (13), (5) is immediate.
By (6), (4) and noticing that [.[1/(y"t9 + | z — £ |**%)dz < cy™%, then

/[ FICEY TR U@ ~Trl g
R - JR

"y"+d+lx-5t|n+d "y"+d+|x—§:|n+d

| fr — fq |

IA N IA

1
R" yn+d + ] T — 5:"'*”4
< CV Y fllap +CY 2+ f oy
< Cy iy + ) S llay -

dr

| fr - fq |

The proof is complete. 0O
Remark Ifd =1, then

[II@ = fa | /141 2")de < €Il £

it follows that [ga[| f(z) | /(1+ |z |*t!)]dz < oo, which is equivalent to the finiteness of
the Possion integral f(z,y), y > 0, of f.

§3. The Proof of the Theorems

Just as stated in the beginning of Section 2, the proof of the main theorems in [2], [3] &
[4] depend closely on the Lemma in [2, p659] and its special forms.

In the proof of our theorems, we repeat the argurent of the proof of the corresponding
theorems in [2], [3] & [4], and use the Lemma in Section 2 instead of the Lemma in |2,
Lemma 1.1, p659]. We only give the proof of Theorems 2 and 3, but not state all the
details.For the proof of other theorems in this paper, we can do in a similar way.

Let Tf be an s—function s(f) or g}—function g}(f) (A > max(1,2/p)), suppose that
| {Tf # oo} |>0,let z be a density point of E = {z: Tf(z) < oo} and @ be any cube
centered at z, write f as

f(z) = fq +[f(z) - folzq + [f(2) — folxeq = fq(z) + gq(z) + hq(z).

Clearly, Tfg = 0. Since f € £*P (1< p<oo,-n/p<a<),

mmu=<@um-mvw%
< ClRI| S Iy » (14)
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where @ € LP.

Just like the proof in [2], the main work we need to do is to prove that for sufficiently
small d depending only on' n, there is a constant C depending only on n, « and p(A) so
that for all z € dQ

(1) Thg(z") < oo = Thg(z) < oo,

(ii) |Thq(z) — Thq(z') |< Cr®|| f|l,p » Where r is the edge lendgth of Q.

Assume that (i) and (ii) are proved, arguing as in [2], we see that T f is finite almost
everywhere,and we need only to show that

0T Ny < U f Nl -

Let Q' be any cube in R"” and Q = (1/d)Q' (Q' = dQ), choose a point z' € dQ so that
Thq(z') < oo. Then, by (14) and (ii),

([, 716 ~ Tha(z) Paa)
= (/Q, | T(9q + hq)(z) — Thg(z) + Tho{z) — The(<') {Pdz)"/?
(f, 1T90(@) P o)t + [ | Tho(@) - Tha(s) Fd)'

Cligq ll, + €1 Q" I2r*|l £ llap
LRI f llap +CIRIIQ 1™ £ oy
QM £l

IA

IAN A

A

‘Thus
L1 T1() = Tha(@) Pds < €1 @ 7/ 1 |1,

this implies that || Tf ||, , < C|| f ||, , , the proof is complete.
Theorems 2 and 3 are proved modulo the results of the following Claims 1 and 2.

Claim 1 Suppose that f € £%? (o # 0,1 < p < o0,~n/p < a < 1/2). Let Q be a
cube with center z and edge length r. Set d = 1/(8\/n). If there is ' € dQ so that
8(hg)(2") < oo. Then there is a constant C depending only on n, o and p, such that
s(hg)(z) < co and

| 8(h@)(2) — s(hq)(«') I< Cr*|| f |l »for all z € dQ.

Claim 2 Suppose that f € £*? (a # 0,1 < p < 00,—n/p < a < 1/2) and A >
max(1,2/p). Q and d stated as in Claim 1. If there is z’ € dQ such that g}(hg)(z') < co.
Then there is a constant C' depending only on n,a, A and p, such that g} (hg)(z) < oo and

[ 95(hq)(z) — 93 (Rg)(z') < Cr?|| f [lap »for all z € dQ.
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3.1. Proof of the Claims
Arguing as in [2, Lemma 2.1}, we have
s(hg)(z) < s~ + 6T,z € dQ,

where

o= ([ [, v sredlrale, ) P,

I'(z)” = {(z,y) €T(z) : y < dr}

and

= ([ [ 07" sradlia s, ) P,
I(z)t = {(z,y) € T(z) : y > dr}.

Estimate s~ and s* as in [2] and use the Lemma in Section 2, we have

“n [ £(z) - fa | 3
C(jL(.,-yl (co!t-zln+T+r"+ldt)3dzdy) |

8

IA

IA

c(["[ g g dedy)}
0 J{|z-z|<y} !
Pl £ o |

IA

and

-z ,"+1 + yn+1

< sthdE+C(f [T+ S I e}

(hg)(&) + CIL 1 llay ([ 1727 + ')
< s(hQ)(z') + Cra” f ”a,p :

st < s(hb)(a:') + C(f/r(z)‘-'-\r(z’) yl-—n( Ar [ £(t) - fq | dt)2 dzdy)%

IA

Therefore, ‘
s(hg)(z) < s(hg)() + Cr*| f llap »

thus
8(hg)(z) < oo forall z € dQ.

Reversing the roles of z and z', we get
| 5(hq)(@) - 8(hq)(z) 1< Crl £ ]l for all z € Q.

Claim 1 is true.

3.2 Proof of Claim 2
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Arguing as in [2, Lemma 2.2], we have g}(hg)(z) (z € dQ) is bounded by the sum of

= Y yanglon o, z 2 dy)3
6= (f [ o GrTamay) " sredlhale, ) Pz

and
G+::// ______y______Anl—n d(h : 2dd%,
oo gaTe=a) "y " sredthals,v)) ['dz dy)

where J(k) = {(2,y) € R¥*':|z—z |< 2¥ ?rand 0 <y <2F%r} fork>0.
Repeating the argument of the estimates for G~ and G* as in [2], we have

- An 1-n If t) fQI 2 L
“ = (//J(O)(wlz zl) (/q [t—z "+ “prdt)" dzdy)

An 1 n, -2 2a . 3
(/ [[lx—z|<r} y+ I T—2 l) H f “a Pd dy)
Cr|| f llap »

IA |

A

G¥ < gi(he)=) + 7

while

r< (> 27F(2kr) A // Y17 grad(ho(z,y)) lzdzdy)%.
(Z AL N A (he
Without loss of generality we may also assume 1 < A < 2. In this case,
2 1
r < C(D_ 272k ) (A + By))3,
k=1

where

ntl-— t)—le
AL = // A+1n/ If( did dy,
* w’ (co(k+1)lt—2l"“+y"“ Vdzdy

n+l— t) - fQ l
B — // An+l-n / l f( dt 2d dy.
k 1(% y ( QH+1\@ l t— 2 ]n+1 + yn+1 ) zay

By the same reason as in (2],

A, < C / An+1 -n I f(t) - fq | 2
ko= / J(k) (/Q(k+1) [t -z |+ (2’=r)n+1dt) dz dy

2’:
= ¢ / Antl=n(gkp)=1(p> ko 2
< /(‘) {|,|Szkr}y (@) (e + @) f Ha,p) dzdy
< @M+ 2 1,
and
B.<C t) — fg |*dt)>.
e Qk+1)\@ | £(t) - fq ["7dt)
— 48 —
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Let g=2/A>1,then 1< ¢ <p,

e 19901/ - a1/
( Q(k+1) | £(t) = 7q [*dt)™* ( Q(k+1)| 1(t) — fo(r+) |'dt)™/1

| Qk+1) |9 | fouee1) = fo |
| Q(E+1) M| fou+r) — fo |

k4 1) |[V/a-1/p 1) — Pap\i/e
QU+ ) PVr([ 170~ Jawen P
Clakryle i (gl 1|,

IA

IAN +

-+

IA

+C (@125 + )| f Nl p
< Cr¥ll flla, - (252 +1),
this implies
By = Cr*|| f |3 (2*r)/2(2* +1)?
Cro|| £ 115,(250)™ (1 + 2%2).

IA

Thus,
A+ Bi < Cr|| f |13 (25" (1 + 2%).

Since a < 1/2,

oo
(X 27%(1 + 2%y £ |2 )5

T <
k=1
oo ) ) .
< O fll,y (2 + 3 2k
k=1 k=1
< CrHfllap -

Therefore,
| 95(hq)(z) < 03(ha) (=) + Cr°Il f llap »
and g;(hg)(z) < 0o for all z € dQq.
Reversing the roles of z and z', we can obtain
| 93(ha)(z) — g3(ha) (=) IS Cr*| f lla,p -
This ends the proof of Claim 2. [ ’

Supplementary Remark: This paper is one part of the author’s thesis [9] for Mas-
ter’s Degree completed in August, 1988. Recently, [10] gave the similar results about
the “Boundedness of the Littlewood-Paley g—function on Lip,(R") (0 < a < 1)
(ie.,£*P (R"))”, but it did not consider the case for other Littlewood-Paley functions
presented here.
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