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Toward Newton Method in Nondifferentiable Optimization*

E.A. Nurminski
(Inst. of Appl. Math., Far Eastern Branch Ac. Sci. USSR, Vladivostok, USSR)

Abstract. For optimization problems

min f(z)

z€l

where f{z} is a convex but possibly nondifferentiable function, we propose an analogue
of Newton Method with theoretical superlinear rate of convergence and discuss its im-
plementation.

One of the main subjects of current research in nondifferentiable optimization (NDO)
is the development of an analogue to Newton Method (NM) which is known for its re-
markable computational properties, but applicable only to smooth strongly convex twice
differentiable function. The studies [1-3] were based on different generalizations of the
Hessian contributed to this aim, but there were no detailed investigations of computa-
tional properties of the proposed algorithms.

In this paper the conceptual version of the algorithm following the general ideas of
NM and possessing an attractive rate of convergence is suggested and its implementation
is discussed.

1. Algorithm
What follows is based on the relationship [4,5]

— min f(z) = € =€ (1)

inf
zEE 0€3. f{0)
This establishes the correspondence between minima of convex function f(z) on a finite
dimensional Euclidean space E and the minimal root of an e—subdifferential mapping
3¢/ (0). The inner product of vectors z,y from E will be denoted by zy.
The e-subdifferential multivalued mapping is defined as usual [6]:

3:f(0)={g:f(z) > gz — ¢, z€ E}.

Without loss of generality it is assumed that f(0) = O and, hence, 8.f(0) is not empty.
Technical considerations require, however, the stronger assumption 0 € int dom f, i.e.,
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boundness of f in the neighbourhood of the origin, this will be supposed further on. One
may expect that htis assumption be relaxed.

Due to monotonicity with respect ot the set-theoretical inclusion the right- hand part
of (1) is equivalent to solving

pist,ehopo)” it 97(€) = ¢le) = 0. (2)

It is easy to demonstrate from the definitions that ¢,(¢) is concave with respect to € for any
p and consequently ¢(e) is concave as well. By the known rules of sub(super)differential
calculus its superdifferential can be determined as

04(c) = co{d¢y(¢),p € p(e)},

where
Ple)={p: ¢p(e)=4(e)llplI< 1}

and 9¢,(€) denotes the superdifferential of $p(€) for a fixed p.
In its turn the set d¢,(¢) can be found as

3d(e) = ﬂ&zo co {u: u(f(p/u)+¢)> ¢p(e) — 6,u>0}. (3)

This can be derived from {7] or obtained form the first principles taking into account
that
¢p(e) = inf u{f(p/u) + €} (4)

Consider the following algorithm for solving (2). Let £¢ be such that ¢(eo) < 0. Define
in a recursive manner the sequence {e;}:

€k+1:5k‘¢(€k)ul:11 k:Oala"'a (5)

where
uk € 0,k (ex, p* € P(ex). (6)

If for some k, u; = 0, then it means that (1) is unbounded.
As uy is in a certain sense the directional derivative of ¢(e;), the algorithm (5)-(6) is
the NM for solving (2), which is equivalent to (1) with respect to the optimal value.
Convergence properties of the algorithm are described by the following theorem.

Theorem Let (1) have a k attainable and finite solution €, with respect to x. Then

i.  The algorithm (5)-(6) converges, i.e.,

lim g5 = g,.
k—o00

ii.  The rate of convergence is superlinear:

lepsr — € |[< Ap |k — s |, A — 0.
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Proof We show first that ¢(e) < 0 for any k. Indeed by the definition
¢(e) < (ee) + urle — k)
and taking € = gy yields
B(ek+1) < d(er) — wrd(ex)uz! = 0.
It immediately follows that the sequence {e;} is monotone and bounded:
€r < €41 S Eu.
From the convergence of {e;}
klingo(ek ~ Ex41) = klir{.lo $(ex)upt = 0.

Superdifferential d¢ is monotone:

(94(') - 98())(' ) < 0

for any €', € < 0 or d¢(e') < d¢(e) for for &' > €. Consequently ux > u, > 0 for any
u, € d¢(e.) and limy_,o ¢(ex) = 0. Therefore limy_,, € = €., now we estimate the rate
of convergence:

ev— k1 S gx— Pler)upt — epe1 = €k — Pler)us’ — £ + per)uy !

= ~gex)(ul’ - uit).
Taking inf with respect to u. € 9¢(e.) yields

€4~ Eky1 S —¢>(6k){u‘€iar;f(€‘)u:1 ~up'}, (7)

It follows from the upper semicontinuity of d¢(c) that when &, — €.

0< 1 = li inf  wu;'-wp'}< inf  wl!—inf =0
= A Kk k-l,rgo{u.elar;s(e.) the ug b < u,ear:é(e.) U Hu.gog(e. )t

From the Lipschitz property of d¢(¢)(8, 9, etc.]
0< —¢(ex) = 8(e.) — d(ex) < Llew — €x),
combining this with (7), we obtain
e« — €k+1 < Lpk(ee — €x) = Ax(ew — €x)
with Ay — 0. The proof is completed. 0O

2. Implementation of the algorithm
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The implementation of the algorithm (5)—(6) requires that the practical solution of
two problems: finding u € d¢,(c) and calculating ¢(g). Since h(u) = uf(p/u) + ue is
convex [10, p.69] the problem (4) of finding ¢,(¢) for a fixed p is well-defined and for
its solution within an arbitrary precision the number of line-search alfgorithms with good
computational records can be applied. Solution u, of this problem provides a supergradient

of ¢(ep). ‘
The simplest case is h(u)—differentiable at minimal point u,. For notational simplicity
we drop the dependence on p and €. Then

pg*/us = f(p/us) +e,

where ¢* = f'(p/u.) is the gradient of f at the point p/u,. It is easy to show that
g* € 8¢ f(0). Moreover it follows from (8) that

pg" = w(f(p/u.)) +¢) = inf u(/(p/u.) +€) = sup pg,
¢ 9€9¢ 1(0)

i.e., g* yields a maxima of the linear form pg on d¢ f(0).

In nonsmooth case (8) may not hold for arbitrary g* € 9f(p/u.). However, such vector
can be easily obtained by the following means: solution (4) is commonly constructed as
a sequence of nested intervals [“5;’ u}] containing u. and converging towards this point.
Directional dervatives at the ends of the intervals with respect to converging interval
directions have opposite signs:

f(p/ui) + € = pgi/ui <0, gi € 3f(p/u}), (8)
f(p/ui) = € — pgi/ui > 0, gk € 31 (p/u},). (9)
If so, there exists ay € [0, 1] such that the weighted sum of (9), (10) equals to zero:
e+ f(p/u}) + awlf(p/ui) — f(p/uf) ~ cangip/ui(1 — e )gip/uf = O,
and for any limit point g* of the sequence {axg}, + (1 — ax)gL},
9" € 0f(p/u.),

due to the continuity of f and uppersemicontinuity of 3 f

e+ f(p/u.) —pg”/u. =0

and the same conclusions hold for the smooth case.

Calculation of ¢(¢) amounts to finding the shortest vector in the set 9, f(0). For this
purpose the iterative process based on supremas of linear forms on 8, f(0) can be applied.
When such supremas are known the shortest vector can be obtained, for instance, by the
algorithms of [11].
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