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A Note on the Number of Loopless Eulerian Planar Maps*
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Abstract. This paper provides the number of combinatorially distinct rooted loopless
Eulerian planar maps with given edge number. Meanwhile, an explicit formula for the
almost loopless case is presented.

In the paper “On the vertex partition equation of loopless Eulerian planar maps” [1],
we found the cubic equation satisfied by the generating function of rooted loopless Eulerian
planar maps with the edge number and the valency of the root-vertex as parameters as
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where f* = f(1,y).

No doubt, it is difficult to solve (1). However, in this note, we provide an indirect way
to find f* and then f from Eg.(1).

First, we recall the parametric expressions for the general Eulerian case. Let h(y)
be the generating function of rooted Eulerian planar maps with the edge number as the
parameter. We know that y and h satisfy the following parametric expressions in [2]:
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Now, we introduce some kinds of new maps. An Eulerian planar map is said to be a
bounded loop map whenever all the edges on the boundary of the root-face are loops. A
boundary loop map is called an inner map if it has a single edge on the boundary of the
root-face. Suppose hpp, h;, are the generating functions of rooted boundary loop maps
and rooted inner maps respectively. Then we have

{ hin = yh';‘_ 3

hBL = -l—:":‘;

*Received June 4, 1990. Research supported by the National Natural Science Foundation of China.

— 165 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Here, we have to notice that the vertex map is neither a boundary loop map nor an inner

map. From (3), we have "
b (4)
1 —yh .

For conveneince, we call the map whose valency of the rooted vertex is 2 to be a 2-
root-valency map. Let hy and h be the generating functions of 2-root-valency loopless
and general Eulerian planar maps with the edge number as the parameter, respectively.
By the same procedure as shown in [3,4], we may see that

(1+hpr)*(h = y) = hu(y(1 + hpL)?). (5)
Let z = y(1 + hpr)?% Then from (3) and (4), we have

z= y(l - yh’))_27
{ hu(z) = (1 - yh)"2(h — y). (6)

Whenever noticing that for any Eulerian planar map except for the vertex map, which
is assumed to be Eulerian, we may get a 2-root-valency one by bisectioning the root-
dege.Conversely, from a 2-root-valency Eulerian map, we may also get an Eulerian one,
which must not be the vertex map, by combining the two edges incident with the root-
vertex into one. The loop map which is a 2-root-valency map can also be treated as the
resultant map of adding a loop on the vertex map. Therefore, we have

hpr =

h = yh. (M
According to (2), (6) and (7), we may finally obtain that

z=-£(¢ - 1)(6 - 2)% ‘
oy = _z(i—(_é)_%f_s—él. (8)

By using the similar procedure from which (7) is derived, we have
hnt = yha,

where hg; is the generating function of rooted almost loopless Eulerian planar maps with
the edge number as the parameter, in which only the root-edge is allowed to be a loop.
But, the vertex map is not defined to be an almost loopless map here.

From (8), we have
z=¢"(1-¢€)(¢ - 2)%
ha = (G5 ©

On the basis of (9), by employing the Lagrangian inversion!®l, we find that the coeffi-
cientof 2", n> 1, is

i@Cn+4i-1) [dn—d+1\ (2n+1 -2
Z( 1)—’_‘T( 3n+2 )( 9 — 2 )
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Of course, the constant term of h, must be zero. This is the number of combinatorially
distinct rooted almost loopless Eulerian planar maps with n edges.
Moreover, it can be verified that the following identities are valid:

n—1 . . {ﬂf_l] . .
i[4n—141 2n+1—-2\ 2n+4+2 -2y 2n—-2-3\
Z(—l)( In+2 )( 2n — 2 >_Z(n——1—2j)( J )’(10)

i=0 §=0
n—1 . . ['";—2] . .
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From the two identities (10) and (11), we may deduce that the number of combinato-
rially distinct rooted almost loopless Eulerian planar maps with n edges is

o=l n—l
1[2] 2n+2—2j 2n—-2-—7 4[2] 2n+35-1 2n — 25
}ZZ n—1-25 j “EZ J n—2j—2 (12)
§=0 =0
In this formula, both summations are over the positive terms.
Finally, we inverstigate h,,, the generating function of rooted loopless Eulerian planar

maps with the edge number as the parameter. In this case, the vertex map is defined to
be include. This means that the constant term of h,; is 1. It is easy to see that

hy; = yhl (13)

al»

where h},; is the generating function of the rooted almost loopless Eulerian planar maps
with the edge number as the parameter in which the root- edges are loops.Since

hn = hal - h;la (14)
from (13), we find the following equation:
hnl - 1= hal - thd. ' (15)

Because h, has been determined by (12), we may recursively extract hyp; term by term

without difficulty according to the relations obtained by identifying the coefficients on
both sides of Eq.(15). In this way, we may obtain

R =1+y" +y° +6y* +14y° + -+, (16)

which represents h,; = f* appearing in Eq.(1).
However, we would like to find an explicit expression of hy. From (9) and (15), we

have
{ 2= €1(1- €)(€ )"

Py
ha = 2(-1+4/1 —42%2—_56)—21).

On the basis of the second term of (17), by expanding the square root into power series,
we obtain

(a7
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In principle, we may express (€2 —¢—1)"1(2 - f)_(2"+2) as a power series of z by the
Lagarngian inversion. Because of the complicatedness involved, we are here not allowed
to spend too much space to do it. It would be very interesting to hit upon a way for the
sake of seeki}lg a simple formula of f* = hy, and then of f from Eq.(1).

We now provide another way to determine hy,;. First, we need to introduce some kinds
of maps. A map is called loop rooted map if in which the root-edges are loops. Let h; be
the generating function of loop rooted Eulerian planar maps with the edge number as the
parameter. It is easy to show that

hl = yhz. (19)

A map is called link rooted map if in which the root-edges are not loops. Let h, be the
corresponding function of link rooted Eulerian planar maps. We have

hr =h-— h’l) (20)

and the vertex map is defined to be included in the set of link rooted ones.
Furthermore, we may also see that

h, = hnl(y(l + hBL)2)7 (21)

in which, the contribution of the vertex map to the both sides is considered as a degenerate
case.

From(2), (4), and (19-21), we can derive that

z=-£(&-1)(€ - 2)%
— 14-£—¢2 (22)
ni £2(2=¢)3"
Thus, we are now allowed to apply the Lagrangian inversion to determine h,; as a power
series of z.
The coefficient of 2™ in hy, the number of rooted loopless Eulerian planar maps with
n edges, is

_ldn-l((l—gz)(sg—zg) _(n—1)! d"‘z( 4+ ¢3¢ ) .
£=1 £=1

n

 nldén-l £2nt3(2 — £)3n+d n!  dgn—2 | £2nt3(2 — £)3ntd

Write

s - 1 dn—2 fl
! (n _ 2)| d&n—Z €2n+3(2 _ £)3n+4 1
o2+ 24+i—1\ [an+1-i
_ izzo(_l) (n+ i+1 )(nnj—i_zz) (23)

for | = 0,1, and 2. Then we have

1
A, = ;(CLS() + 5 — 352) (24)

— 168 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



It is not difficult to verify the following identities:

"f(_l)i (Zn + 2i+ i 1) (4::1:2;)

i=0
(%52] . .
2n+2-1+47 2n—-24+1-2j
= Yy [T "7 . (25)
o 7 n—2-2j

forn>2,—(n+1) <!<2n+ 3. From (25), for | = 0,1,2, we have

(53] . .
_ 2n+2~-14y 2n—-2+1-25
si= s (e (), (20

§=0 J
all of which are expressed as summation of positive terms.

In consequence, by substuting (26), for | = 0,1, and 2, into (24), we may find.

-2
[%3*

) ) o (2o
An=3]§)(2 +i(n2(ff(n+;)4) 2><(2 ;”) (2 : 23), (27)

for n >,1. Of course, Ag = 1, the constant term of h,; which corresponds to the vertex
map, the degenerate case.

Finally, we point out that it seems to be possible to establish a quadratic equatiion
instead of Eq.(1), the cubic one.
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