A Note on Finite Solvable (q)-group and (s-q)-group*

Zhang Qinhai

(Dept. of Math., Shanxi Teachers' University, Linfen, China)

Abstract. In [1], [2], the authors studied the finite solvable group in which every subnormal subgroup is quasinormal (i.e., (s-q)-group) and the finite solvable group in which every subnormal subgroup is s-quasinormal (i.e., (s-q)-group). In this paper, we shall characterize finite solvable (q)-groups and (s-q)-groups by general nilpotent groups and give the classification of inner (s-q)-groups.

For convenience, we introduce the following definitions and symbols.

Definition 1 Let H be a subgroup of group G. If $\forall K \leq G, HK = KH$ holds, then H is called quasinormal subgroup of G, written as $H \neq G$, if for any prime $p \mid |G|, P \in \text{syl}(G), HP = PH$ holds, then H is called an s-quasinormal subgroup of G, written as $H \neq G$.

HsnG means that H is a subnormal subgroup of G.

Definition 2 Let G be a finite group. If every subnormal subgroup of G is quasinormal, then G is called (q)-group; if every subnormal subgroup of G is s-quasinormal subgroup of G, then G is called (s-q)-group; if every subgroup of G is quasinormal, then G is called quasi-Hamilton group.

Definition 3 Let $\Pi(G) = \{p_1, p_2, \dots, p_n\}$ be a prime factor set of |G|. If there exists Sylow subgroups $P_i \in \text{syl } p_i(G)$ $(i = 1, 2, \dots, n)$ such that $\forall a \in P_i, b \in P_j, \langle a \rangle \langle b \rangle = \langle b \rangle \langle a \rangle$ holds, then G is called a general nilpotent group, $\{P_1, P_2, \dots, P_n\}$ is called a general nilpotent basis.

Definition 4 If every proper subgroup of group G is a (s-q)-group, but G is not a (s-q)-group, then G is called a inner (s-q)-group.

Lemma 1 Let G be a general nilpotent group and $\{P_1, P_2, \dots, P_n\}$ a general nilpotent basis of G. Then

- 1) If $Q_i \leq P_i$, then $Q_i P_j = Q_j P_i$, $i = 1, 2, \dots, n$;
- 2) If $Q_i \leq P_i$ and $Q_j \leq P_j (i \neq j)$, then $Q_i Q_j = Q_j Q_i$.

^{*}Received Feb. 17, 1988. Supposed by Shati Province Youth Science Found.

Proof Assume $a \in Q_j$, $b \in P_i$, $i \neq j$, then $\langle a \rangle \langle b \rangle = \langle b \rangle \langle a \rangle$, i.e., $ab = b^t a^s$. Hence $ab \in P_iQ_j$. It follows that $Q_jP_i \subseteq P_iQ_j$. Conversely, it is easy to obtain that $Q_jP_i \subseteq P_iQ_j$, so $P_iQ_j = Q_jP_i$. If i = j, obviously, $Q_jP_i = P_iQ_j$. Therefore, 1) holds. 2) follows in a similar way. \square

Lemma 2^[1] G is a finite solvable (q)-group if and only if G has a Abel normal Hall subgroup N of order odd such that

- 1) G/N is Hamilton group;
- 2) $\forall x \in N, \forall y \in G, x^y = x^{k(y)}, k(y) \text{ is integer.}$

Theorem 1 G is finite solvable (q)-group if and only if G is a general nilpotent group in which every Sylow subgroup is quasi-Hamilton group.

Proof Necessity is obvious by Lemma 2.

For the converse part, let $\{P_1, P_2, \cdots, P_n\}$ be a general nilpotent basis of G. Then $G = P_1 P_2 \cdots P_n$. Assume $H \text{sn} G, K \leq G$. Since general nilpotent group is supersolvable group [3, Th. 9.6], we have $K = Q_1 Q_2 \cdots Q_n$, where $Q_i \in \text{syl} p_i(G)$ and if $p_i \not \mid |K|, Q_i = 1, 1 \leq i \leq n$. Obviously, it is enough to prove $HQ_i = Q_i H$. By Sylow's Theorem, it can be assumed that $Q_i \subseteq P_i^{x_i}$ (where $x_i \in G$), $i = 1, 2, \dots, n$. Thus it is obvious that $\forall x \in G$,

$$H = (H \cap P_1^x)(H \cap P_2^x) \cdots (H \cap P_n^x).$$

Taking in turn $x = x_i$ $(i = 1, 2, \dots, n)$, we get

$$H = (H \cap P_1^{x_i})(H \cap P_2^{x_i}) \cdots (H \cap P_n^{x_i}).$$

For $H \cap P_j^{x_i} (i \neq j)$, since $H \cap P_j^{x_i} \subseteq P_j^{x_i}$, it follows from Lemma 2 that

$$(H \cap P_i^{x_i})Q_i = Q_i(H \cap P_i^{x_i}), i = 1, 2, \cdots, n.$$

For $H \cap P_i^{x_i}$, since Q_i and $H \cap P_i^{x_i}$ are all subgroups of $P_i^{x_i}$, $P_i^{x_i}$ is a quasi-Hamilton group, so $(H \cap P_i^{x_i})Q_i = Q_i(H \cap P_i^{x_i})$. Thus we obtain $Q_iH = HQ_i, i = 1, 2, \cdots, n$, and hence HK = KH. So G is a (q)-group. \square

Lemma 3 Assume G is a solvable group, $G = NM, N \triangleleft G$, and (|M|, |N|) = 1, if HsnG, then $H = (H \cap M)(H \cap N)$.

Proof Since $H ext{sn} G$, we may assume $H = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_t \triangleleft G$. We will prove $H_t = (H_t \cap M)(H_t \cap N)$. Obviously,

$$(H_t \cap M)(H_t \cap N) \subseteq H_t. \tag{1}$$

On the other hand, if $|H_t| | |M|$ or $|H_t| | |N|$, by Hall's theorem for solvable group, since $H_t \triangleleft G$, we obtain $H_t \subseteq M$ or $H_t \subseteq N$. In this situation, $H_t = (H_t \cap M)(H_t \cap N)$.

If $|H_t| \not |M|, |H_t| \not |N|$, assume $|H_t| = ab$, $a \mid |M|, b \mid |N|$. Since H_t is slovable, so H_t has a Sylow basis. Hence, there exists a subgroup H_1^* of order a and a subgroup H_2^* of order b such that $H_t = H_1^* H_2^*$. Thus there exists some $x \in G$ such that $H_1^* \subseteq M^x, H_2^* \subseteq N$ for any $h \in H_t$, it follow that $h = h_1 h_2$, where $h_1 \in H_1^* \subset M^x, h_2 \in H_2^* \subset N$. Therefore $h = h_1 h_2 \in (H_t \cap M^x)(H_t \cap N)$, i.e., $H_t \subseteq (H_t \cap M^x)(H_t \cap N)$. Since $H_t \triangleleft G$, so

$$H_t = (H_t \cap M)(H_t \cap N). \tag{2}$$

We obtain from (1) and (2) that $H_t = (H_t \cap M)(H_t \cap N)$.

Since H_t satisfies all the conditions in Lemma 3. It follows by induction that $H = (H \cap M)(H \cap N)$.

Lemma 4[2. Th.2.3] G is a finite solvable (s-q)-group if and if only if G has a normal Abel Hall subgroup N of odd order such that

- 1) G/N is nilpotent group,
- 2) $\forall x \in N, y \in G, x^y = x^{k(y)}, k(y)$ is integer.

Theorem 2 G is a finite solvable (s-q)-group if and only if G is a general nilpotent group.

Proof Necessity is trivial by Lemma 4. Conversely, let G be a general nilpotent group, $|G| = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$, where $p_1 < p_2 < \cdots < p_n$ and p_i is prime $(1 \le i \le n)$. Thus there exists a general nilpotent basis $\{P_1, P_2, \cdots, P_n\}$ such that $G = P_1 P_2 \cdots P_n$ and $\forall a \in P_i, \forall b \in P_j, \langle a \rangle \langle b \rangle = \langle b \rangle \langle a \rangle$.

Let $N = P_2 P_3 \cdots P_n$. Then $N \triangleleft G$, $(|P_1|, |N|) = 1$ and $G = P_1 N = P_1^x N$, $(\forall x \in N)$. Let $H \bowtie G$, by Lemma 3, $H = (H \cap P_1)(H \cap N)$. Since $H \cap N \triangleleft H$, so $H \cap N \bowtie G$ and $H \cap N \bowtie N$. Let $N_1 = P_3 P_4 \cdots P_n$, then $N = P_2 N_1 = P_2^x N_1$, $(\forall x \in G)$. In the same way, $H \cap N = (H \cap N \cap P_2)(H \cap N \cap N_1) = (H \cap P_2)(H \cap N_1)$.

We proceed in a similar way and finally obtain

$$H=(H\cap P_1)(H\cap P_2)\cdots (H\cap P_n).$$

Similarly,we can obtain that $\forall x \in G$, $H = (H \cap P_1^x)(H \cap P_2^x) \cdots (H \cap P_n^x)$. Take any $p \in \text{syl}P_i(G)$, then there exists some $x \in G$ such that $P = P_i^x$. Since $\{P_1^x, P_2^x, \cdots, P_n^x\}$ is also a general nilpotent basis of G, hence

$$PH = P_{i}^{x}H = P_{i}^{x}[(H \cap P_{1}^{x})(H \cap P_{2}^{x}) \cdots (H \cap P_{n}^{x})]$$

= $(H \cap P_{1}^{x})P_{i}^{x}(H \cap P_{2}^{x}) \cdots (H \cap P_{n}^{x}) = \cdots$
= $(H \cap P_{1}^{x})(H \cap P_{2}^{x}) \cdots (H \cap P_{n}^{x}) = HP.$

Thus we obtain $H\operatorname{sqn} G$, i.e., G is a solvable (s-q)-group. \Box Finally, we list the following corollaries without proof.

Corollary 1 The subgroup, (quotient group) of a general nilpotent group is still a general

nilpotent group.

Corollary 2 G is an inner (s-q)-group if and only if G is precisely one of the following:

I. q-basic group of order $p^{\alpha}q^{\beta}$, the exponent b of $q \mod p$ is more than 1.

II. Inner supersolvable group of order $p^{\alpha}q^{\beta}, p^{\alpha} \mid q-1, \alpha \geq 2$, the definition relation is

$$a^{p\alpha} = c_1^q = c_2^q = \cdots = c_p^q = 1, c_i c_j = c_j c_i, 1 \le i, j \le p.$$

 $c_i^a = c_{i+1}, i = 1, 2, \dots, p-1, c_p^a = c_1^t$, the exponent of $t \mod q$ is $p^{\alpha-1}$.

III. The group of order $p^{\alpha}q^{2}$, $p \mid q-1$. The definition relation is

$$a^{p\alpha}=b_1^q=1; b_1b_2=b_2b_1,$$

$$b_1^a = b_1^{k_1}, b_2^a = b_2^{k_2}, k_1 \not\equiv k_2 \pmod{q}, k_1^p \equiv k_2^p \pmod{q}.$$

References

- [1] G. Zacher, I gruppi riolubili finiti in cuii sottogruppi di compasizione coincidono con i sottogruppi quasi-normal, Atti. Acad. Naz. Lincei Rend. cl Sci. Fis. Mat. Natur., bf 37(1964), 150-154.
- [2] K.R. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc., bf 47(1975), 77-83.
- [3] Chen Zhongmu, Inner-Outer-∑ Group and Minimun Non-∑ Group, Westsouthern Teachers' University Press, 1988.
- [4] M. Hall, The Theory of Groups, Macmillaon Co., New york, 1959.

有限可解(q)群与(s-q)群的一个注记

张 勤 海

(山西师范大学数学系,临汾 041004)

摘要

文[1].[2]分别研究了每个次正规子群为拟正规的有限群(即(q)群)以及每个次正规子群为 s-q 拟正规的有限群(即(s-q)群).本文利用广幂零群的概念对(q)群与(s-q)群给出了一个新的刻划,并得到内(s-q)群的完全分类.