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The Inverse Generalized Eigenvalue Problem*

Yin Qingziang
(Dept. of Math., Yancheng Teachers’ College, Jiangsu, China)

Abstract. This paper presents a kind of inverse generalized eigenvalue problem for real
symmetric band matrix, and gives a proof to the existence of the solution to the problem
for Jacobi and ordinary symmetric matrices.

1. Introduction

In this paper, we consider a kind of inverse generalized eigenvalue problem as follows:
Problem IGE: Given a real symmetric band matrix B = (b,-,-):'j=l, which is positive

k
definite and b;; = O when | 1 — j |> r. Given real numbers {/\Ek)}__l, k=n-r,---,n,
satisfying =
A <aEN ¥ iz k- L k=n—ren (1)
Determine a real symmetric matrix A = (ay;); ;=1 S0 that the generalized eigenvalue

problem
A(k)z = AB(k)z

has eigenvalues {Ask)}:;l, where A(k) = (a,-_,-):jzl, B(k) = (b,'_,-)".c,jﬂ, a;; = 0 when
[i—g|>r.

This problem often arises in molecular spectroscopy, where the inverse of matrix B is
called the Wilson Kinematic matrix determined by molecular geometry and atomic masses,
and matrix A the force constant matrix, to be determined by the measured spectrum. In
structural mechanics, A and B are called mass matrix and stiffness matrix respectively,
so the problem is how to determine the mass distribution of a structure by its stiffness
distribution and its natural frequencies of vibration under boundary conditions. (Because
of the reciprocity of matrix A and B in generalized eigenvalue problem in certain sense,
this problem can also be interpreted as how to determine the stiffness distribution of a
structure,by its mass distribution and its natural frequencies of vibration). In the following
two sections, we are going to discuss two special cases:r = n — 1 and r = 1. For r =
n — 1, which means that A and B are real symmetrix matrices, we first give a result
about the inverse eigenvalue problem of real symmetric matrix obtained by Friedland
and then transform the inverse generalized eigenvalue problem into inverse eigenvalue
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problem, thereby to obtain the results of the existence and the number of the solutions of

the problem. For r = 1, namely, A and B are Jacobi matrices, we assume that {/\(k)} =1

satisfies
AR <201\

i =L k—-Lk=n—r---\n (2)

and give the proof of existence of the solution of the problem, this can be regarded as a
generalization of the result of Hald [,

2. The inverse generalized cigenvalue problem for real symmetric matrices

If r = n — 1, the problem IGE can be stated as follows:
Let B = (b,.,)"7 , be a real valued and positive definite matrix. Given sequence of

real numbers {); k)}' ;» k=1,---,n satisfying the inequalities (1). Reconstruct a real
symmetric matrix A so that the generalized eigenvalue problem

A(k)z = AB(k)z (3)

has solution {/\( }‘ 1» Where A(k) = (a,-j)f,jzl, B(k) = (b,'j)f,jzl, k=1,---,n

If B is a unit matrix, the problem becomes an inverse eigenvalue problem to which
Friedland [2! proved the following theorem:
Theorem 1 Let {/\(k)}

k
Then there erxists an n X n real valued symmetric matriz A such that {/\'(k)}i=l are the

i=1» Kk =1,---,n be sequences of real numbers satisfying (1).

eigenvalues of matriz A(k) = (a;j)szl, for k=1,---,n.

Let P,(\) = I, (x - ,\‘(k)). Then, the number of matrices A is finite if and only
if whenever a is a root of Py()\) of multiplicity m > 1 then « is a root of Piy1(X) of
multiplicity not less than m, for k = 2,--- ,n — 1. Assume that the given eigenvalue
problem has a finite number of solutions. Let l; be the number of simple roots of Pi())
which are not roots of Pey1(A) for k=1,--+- n— 1. Then the number of distinct matrices
which satisfy the condition of the theorem is equal to 2!, where

n—1
1= I
k=1

In particular, if there hold strict inequalities in (1), then the number of distinct matrices
A is equal to 27(n-1)/2,

Now we return to the case where B is a real valued and positive definite matrix.
Let B = LLT be the Cholesky decomposition of B. It is known from Theorem 1 that

under condition (1), there exists a real symmetric matrix A' such that {/\sk)}f:l are the
eigenvalues of matrix A'(k), for k=1,--- n.
Let
A=LALT. (4)
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Partition matrix A' and L as

Al(k) 2T ] L:{L(k) 0 ]

r_
A= Xe Yi |

where A'(k) and L(k) are kk matrices. Because

A [ L(k) 0 ] [A'(k) X{] [ L(k)T MT ] _ [ L(k)A'(k)L(k)T «

M, N Xy Y o N/ ¥ ’
g | Lk) 0O L(k)T MT | | L(k)L(K)T =
h M, N 0 N,Z‘ - % x|’
where * denotes a suitable submatrix, we have
A(R) = L(k)A'(K)L(K)T (5)
B(k) = L(k)L(k)T. (6)
Hence, the generalized eigenvalue problem (3) becomes
L(k)A'(k)L(k)Tz = AL(k)L(k)Tz, (7

since B is positive definite L(k) is reversible, let L(k)Tz =y, (7) becomes
A'(k)y = Ay. (8)

Thus (3) does has solution {A( )}' 1 k=1,---,n. This means that A = LA'LT is

the matrix which we want to reconstruct Moreover, since A and A' have one to one
relationship, the number of distinct solution A is the number of distinct solution A'.

The above discussion can be stated as a theorem about the inverse generalized eigen-
value problem for real symmetric matrix:

Theorem 2 Let {); k)}' 1 k=1,--,n be sequences of real numbers satisfying the in-
equalities (1). Let B = (b ,])”:1 be a real symmetric and positive definite matriz. Then

k
there ezists an n X n real valued symmetric matriz A = (ai;);;_,, such that {/\Sk)}'.:1 are

the solutions of generalized eigenvalue problem (3) for k = 1,---,n. Let B = LLT be
the Cholesky decomposition of matriz B and matriz A' such that A'(k) has etigenvalues

k
{/\,(k)}'.=1 for k = 1,---,n. Then matriz A = LA'LT is a solution of the problem, the
necessary and sufficient condition of the number of solutions beging finite and the number
of solutions when it is finite are the same as that in Theorem 1.

3. The inverse generalized eigenvalue problem for Jacobi matrix

When r = 1, the problem IGE is called the inverse generalized eigenvalue problem for
Jacobi matrix, about which we have the following theorem:
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Theorem 3 Let B be a positive definite Jacobi matriz. Given real numbers {o;},, {8 :-:11
satisfying .
0 <P < <ap1<Pp1<an. (9)

Then there exists a Jacobi matriz A such that the generalized eigenvalue problem
A(k)z = AB(k)z, k=n—-1,n

has solution {ci}i,, {Bi}i)!, where A(K) = (ai;){;_y, B(K) = (bij); ;-

We need the following lemmas in the proof of Theorem 3.
Lemma 1 Let
[ ay by ] a1 dy ]

bl ... ._' ’ dl

bn-1 oo T dp
| bp-1 an i | dn-y cn ]

and B be positive definite. Then
fe(A) = det(AB(k) — A(K)) = ti (1), (10)

where P()) is a monic polynomial of degree k,ty = detB(k) > 0, and ty is given by the
recurrence ;ormula
te = Ckty—1 — di_ytk—z, k=2,---,n, (11)
to = 1, tl = (3.

Proof From detB(k)det(AB(k) — A(k)) = det(AI — B(k)~1A(k)), we have ( 10 ). Ex-
panding det B(k) by the last row gives (11 ). O

Lemma 2 Let {o;}7"}, {Bi}7oy satisfy (% ). Let

| Pn(/\) = lf[(A-—a,'), Pn_l()\)r-'jil(/\*ﬁi)- (12)
Then the equation |
Po(M)Pa-1(X) = Pa(N) Py (A) = c[Paca ()] (13)

has at least one real root for any real constant ¢ > 1. Where P, ()) denotes the derivative

of Pp(A).
Proof It is obvious that §; (f = 1,---,n ~ 1) is not the solution of ( 13 ). Hence the
equation is equivalent to
PA)Pa ()~ PPy () _
[Pra-1(A)]?

p(A) =
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From ( 12 ), we have

P()\) -1
Pn—l(A) ’\ ,31 '
Thus ,
_ [_Pa(})
SO(A) - [Pn—l('\)] Z ()\ ,6,)2’ (14)
where ¢; = —I,)'—'(&)—, especially

Pn—x(ﬁi)
Pn(ﬂn—l) ?——l(ﬂn—l - Oli)

= = = <0.
Pr;—l(ﬂn—l) f": 2(,Bn—l - ﬂt)

Therefore, we have hmA_,ero ©(A) = +o0, it follows that there exists a constant [ > 8,

such that p(I) > c. It is obvious from ( 14 ) that limy_, 100 9(A) = 1, this gives that there

exists a constant u > [, such that o(u) < ¢. Since () is continuous on [/, u], there exists

a point Ag such that ¢©(Ag) = c¢. The proof is complete.

Cn—1

Lemma 3 Let

C1 d;

d

dn—l

dnoy Cn

be positive definite. Let Po(A) and P,_1(A) satisfy the condition in Lemma 2, and t; (k =
1,---,n) be defined by ( 11 ). Then there ezist real numbers a and b such that

tnPa()) = (cnd — @)tp—1Pao1(X) = (dn1A = 8)tp_2Pu_2(A), (15)

where Pp,_3()} is a monic polynomial of degree n — 2, which has n — 2 real roots interlaced
by n — 1 real roots of Pp_y()).

Proof First we assume d,_; # 0. Let ¢(A) = tpnPa(A) — (cnA — @)tn_1P,—1(X). Now we
determine the constant a so that ¢()) has a real root of multiplicity two. To do this, we
only need to solve the equations about a and A:

o)) = taPa(3) = (60 = @)tn-1 Par(3) =0, (16)
$(A) = taPi(A) = catn_1Pa_1(A) = (oA — @)tn_1Ph_1(A) = 0. (17)

Multlplylng (16 ) by P._,(}), and multiplying ( 17 ) by P,_1(A) and substracting, we
obtain t, Po(A)Pao1(A) = ta Pa(M)Pa_i(A) = cata-1[Pe-1(N)]? =0, ie.,

PANPaca(0) = Pa(0) P (4) = 2 (Pa () (18)

From ( 11) ,
th = cntn-1 — dy_ytn—2 ' (19)
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and d,,_; # 0 by assumption, t,_3 > 0 t, > 0, according to Lemma 1, we have
Cntn—1 =1+ dﬁ—ztn—z
t, t

From Lemma 2 it follows that ( 18 ) has a real root Ap > fn—1. Substituting A = Ag in (
16 ) gives

> 1.

tnPn(/\O)
tn—1Pn-1(Xo)’

a=cpAg—
Suppose b = d,_1A0, then
$(A) = (A = 20)*9(A) = —(dn-1X = b)*tn 3 Pas(}),

where g()) is a polynomial of A and so is P,_2(A).

Comparing the leading coefficients of both sides in the above equation, noticing the
definition of ¢()) and ( 19 ), it follows that P,_2()) is a monic polynomial of n — 2 and
that ( 15 ) is valid.

Substituting A = §; in ( 15 ) gives

n

tn [](8; — cu) = 0 = (dn-1B; — 8)*tn_2Pn2(8;) = —di_1 (B — M0)*tn-2Pa-2(8;),

=1

By (19 ), sgnP,_3(8;) = (—1)*"*1, therefore P,_1(A) has a root v; in the interval
(Bi, Bjx1) for j=1,---,n~1.1ie,

Pr<vi<Py<:<Pn-z2<Vp-2<Pn-1
When d,_1 =0, ( 15 ) becomes
tnPa(A) = (cpA — a)tn-1Pa1(A) — b%tn_2Pa_2(X) (20)

and ( 19 ) becomes
t, = Cnln-—-1 (21)

so ( 20 ) can be rewritten as
Pn(A) = (k - a/c,,)P,,_l(/\) - bz(tn_z)/tnpn_g(A). (22)
The proof is complete except that of ( 22 ) which we refer to Lemma 1 in [1] of Hald. O

Proof of Theorem 3 For n = 2, by Lemma 1, we have to find real numbers ay, by, az
satisfying '

fi(A) = Aer—ar=ci(d - By), (23)
fz(/\) = (Acz - az)()\cl - a1) - (Adl - b1)2 = (0102 - d‘f)()\ - Oq)(/\ — a;),) (24)

Comparing the coefficients in both sides of ( 23 ) gives

ciaz + cza1 — 2d1by = (e163 ~ df) (o + az) (25)
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ajas — bzl, = (6102 - di)alaz; (26)
From ( 23 ), we have a; = ¢ ;. Substituting in ( 25 ) and ( 26 ) and eliminating a; gives
~-0162,3% + 2d1ﬂ1b1 - b% = (0102 — d%)[alaz — ﬂl(al + az)]. i.e.,
b% — 2d1ﬂ1b1 —+ 61C2ﬂf -+ (c1c2 - d%)[alag — ﬂl(al + ag)] =0.
This is a quadratic equation of b; with discriminant
A = 4dif? — dcieaB? - 4(cica — d)[aras — Bi(ar + az))
= 4(cicz — d})[-B} + (01 + a2)B1 — 03]
= 4(cicz - d})(B1 — au)(az — B).

Because of the positive definiteness of B and the interlacing condition ( 9 ) , we have
A > 0. So the quadratic equation has two distinct roots. Substituting one of them in (
25 ), we can determine az, and withay, b1, a3 we can construct matrix A.

We assume that the theorem is true for n < m — 1. Because

a1 < P1 << am-1 < Pmo1 < o,

Pu(3) =TI - o), Pacs(¥) = TL (- 5)-
=1 =1

By Lemma 3, there exist real numbers a,, and b,,_; such that
tmPm(A) = (€mA = am)tm-1Pm-1(A) = (dm-1A = bm—1)*tm—2Pm—2(}).

Where t; (k = m,m — 1,m — 2) are defined by ( 11 ), Pr_2()) is a monic polynomial of
degree n—2, whose roots {v;}:-'f__"lz are real and interleave {ﬂ;}:’_ﬁ_’il.An induction assumption
guarantees a Jacobi matrix of order m — 1,

[ ay b1 1
by

bm-—2
bn-2 am-1 ]

such that
det(AB(m — 1) — A) = tp1 Pp-1(A);det(AB(m — 2) — A(m ~ 2)) = tm—3Pm-2(A)
Now, construct matrix A as
[a1 &
b1

bm—2

bm—2 @m-1 bm-1
bm-1 am
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It is bovious that
det(AB ~ A) = (cmA — am)tm—1Pm-1(A) — (dm-1A — bm_l)ztm_sz_g()\) =ty Pm(A),

det(AB(m — 1) — A(m — 1)) = tm-1Pm-1(A).

Theréfore matrix A is what we want, and this finally completes the proof of Theorem
3. O
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