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1 Introduction

Set-valued mappings, as we know, are of great use in the theory of operations re-
search, especially in the existence of optimal solutions, stability theory and convergence
of algorithms for mathematical programming, and game theory, etc.. In this paper, we
give a result for set-valued mappings defined on a paracompact convex set which is closely
related to Theorem 8 in [1], and neither of them implies the other. From this we give
some sufficient conditions for the existence of an equilibrium point, and new coincidence
or fixed point theorems, which generalize the earlier results in the references.

Let E be a Hausdorff topological vector space and X be a non-empty convex subset
of E, E', the dual space of E. For z € E, let us put

Px(z) = {¢€E'|¢(z) < inf 4(y)},
Nx(z) = {¢€E'|¢(z) 2 inf $(y)}-

Then we have that Px(z) = —Nx(z). Px(z) and Nx(z) are called the positive normal
and the negative normal cone to X at z respectively. We denote by Tx(z) the negative
polar cone to Nx(z), then Tx(z) = cl|Uy»0A(X — z)], and Tx(z) is a common tangent
cone to X at z while X is cl(X).

Let Y be a Hausdorff vector space, F : X — 2 be a set-valued mapping. We recall
that F is said to be upper hemicontinuous (u.h.c.) on X, if for every ¢ € Y’, the function

o(F(z),¢) = sup ¢(y)
yEF(z)

is upper semicontinuous on X. F is called weakly upper hemicontinuous (w.u.h.c.) on
X, if for every ¢ € Y/, the set {z € X | o(F(z),4) < 0} is open in X. It is easy to see
that u.h.c. = w.u.h.c., but the converse is not true. F is called upper demicontinuous
(u.d.c.) on X, if for every zop € X and any open half- space H ={y €Y |d(y) <r}inY
containing F(zo), where 0 # ¢ € Y' and r is a real number, there exists a neighborhood -
V(zo) of zp in X such that F(z) ¢ H for all z € V(zp). It is not difficult to prove that
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ud.c. = uh.c.. The following examples will show that the converse is false. We take
E=X =Y = E?, define F as
Flz)={yeY |y 2exp(~-yi}- || z[[},z € X.

For any ¢ € Y', let ¢ be in the form ¢(y) = ajy1 + azy2. Then we have o(F(x),¢) =
o(F(0),¢) —az || z ||, for all z € X, and F is u.h.c. on X. The open half-space {y € Y|
y2 > 0} containing F(0) does not contain F(z), for all z # 0.

2 General Results

Lemma 1 Let X be a non-empty sel in a topological vector space, and g a real-valued
function on X X X such that

(a) For each fized z € X, the set {y € X | g(z,y) > })} 1s compactly open in X.
(b) For each fiezed x € 'X, the set {y e X | g(z,y) > 0} is conver.
(c) 9(r,z) <0 forallz € X.

d) For some compact conver set Xo C X, the set {y € X | g(z,y) <0 for all z € X¢}
15 compagt.

Then there exists y1 € X such that g(z,y1) <0 for allz € X.
Proof This is a special case of Theorem 1.1’ in [8].

Lemma 20 Let E,Y be locally convez Hausdorff topological vector spaces, and {p}, {¢}
the syslems of semi-norms respeclively defining the topologies of E and Y. Then a linear
operator T on D(T) C E intoY 1s continuous if and only if, for every semi- norm q € {q},
there ezists a semi-norm p € {p} and a positive number B such that

q(Tz) < Bp(z) for all z € D(T).

Lemxma 3 Let E|Y be locally convez Hausdorff topological vector spaces, L,(E,Y) the
set of all continuous operators from E to Y with stmple convergence topology, and X C E
a non-empty subsets of E. If L : X — L,(E,Y) is a continuous mapping associaling with
each £ € X an element of L,(E,Y), then the mapping L' : X — L (Y', E"), where L'(z)
is the dual operator of L(x), ts also continuous.

Proof Let p be any semi-norm in £ (Y', E') and z,z9 € X. Then p(L'(z) — L'(z0)) =
supy<i<n 9[{L'(2) - L'(z0))y;], where ¢ is a semi-norm in E!,. and y; € Y’ for each i, and
also

(L) - Liao))yl) = sup |(L(e) — L'(zo))ui(s)

N lé?ém [y.,((L(:l:) - L(zo))z.‘i)!)
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where z; € E for each 5. Apply Lemma 2 to each y,’-, then there exists a semi-norm ¢; in
Y and a constant 8; for each ¢ such that

v:((L(=) - L(20))z;)} < Biti[(L(=) = L(zo0)z;)].
Therefore

plL'(z) = L'(zo)] < sup sup Biti[(L(z) — L(z0))s;]

1<i<n 1<;<m

sup fB; sup ti[(L(z) — L(zo))z;]
1<i<n 1<5<m

= sup fFir;[L(z) — L{zo)],
1<i<n

where r; is a semi-norm in £,(E,Y) with

ri(L) = sup 4;(L(z;)), for L € L,(E,Y).
1<j<m :

So we have p(L'(z) — L'(z¢)) — 0 as z — 7. Since L is continuous in z and the proof
is complele.

Lemma 4191 Let X be a non-empty set in a locally convez Hausdorff lopological veclor
space and p : X — E' a conlinuous mapping. For each z € X, define h(z,-) : X — R by
h(z,y) = p(y)(y — z) for every y € X, then for each fized x € X lhe function h(z,-) is
continuous on every compact subset of X.

Theorem 1 Let E,Y be locally convex Hausdorfl topological vector spaces and X be
a non-empty paracompact convez subset of E, and L : X — L,(E,Y) be a conlinuous
mapping as in Lemma 2. Let ® be a non-empty conver subset of Y' and S : X — 2% be a
set-valued mapping such that

(a) For each z € X,S(zx) 1is a non-empty convez subset of P.
(b) For cach ¢ € @, the set S™(¢) = {x € X | ¢ € 5(x)} is open in X.

Then either (1) {y€ X | S(y) N L'(y)"'Px(y) # 0} # 8, or (2) [+r any compact ronvex
subset Xo of X and any compacl subset K of X, {y € X | S(y)NL'(y) ' Px,(v) # 0} ¢ K.

Proof By (a), for each z € X, there is a ¢, € ® such that ¢, € S(z), so z € S™1(¢,).
By (b), {S71(¢.) | z € X} is an open covering of X. Let {V; | i € I} be a locally
finite refinement of this open covering and {o; | ¢ € I} be a continuous partition of
unity, subordinated to {V; | ¢ € I}, ie., for each ¢ € I,0; : X — [0,1] is continuous
and cl(e;1(0,1]) € Vi, each z € X has a neighborhood meeting only a finite number of
cl(a;1(0,1]), and Y ;cra;(z) = 1 for every z € X. Since {V; | i € I} is a refinement of
{S7Y(4.) | z € X}, there exists for each 1 € I a z; € X such that V; € S71(¢,,). Now
define
Y(z) = Zag(m)éz'. (z € X).

el
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Then we have ¢/(z) € ® for each z € X, and for i € I and z € X, a;(z) > 0 implies
z € o7 1(0,1] ¢ V; ¢ S7Y(¢s,), i.e., ¢, € S(z). Therefore by the convexity of S(r) we
have

Y(z) € S(z) forallz € X. 4))

Define p: X — E' by
p(y) = D ci(y) L' (v)#= (v € X)
el
and h: X X X — R by

h(z,y) = Y(WIL(Y)(y - 2)],(z,y) € X x X.

Then by Lemma 3 and Lemma 4, we have that, for each fixed z € X, h(r,y) = p(z)(y—2) is
continuous in y in any compact subset of X, so that for every z € X, {y € X | h(z,y) > 0}
is compactly open in X. It is clear that {z € X | h(z,y) > 0} is convex for every y € X
and h(z,z) =0 for all z € X. By Lemma 1, we have either

(i)  There exists y; € X such that h(z,y;) < 0 for all z € X.

or

(i) For any non-empty compact convex subset Xy of X and any compact subset K of
X,{ye X|h(z,y) <0forallze Xy} ¢ K.

For any subset C of X, since

h(z,y) = $(W)[L(¥)(y — 2)] = [L'(W)¢ W)y - [L' W) (v))=,
it follows that
h(z,y) <OforallzeC - L'(v)4(v) € Po(y)
<= $(y) € L'(y) ' Pe(y) = S(y) N L'(y) " Pely) # 0 (by (1)).
So we have the requirement from (i) and (ii).

Remark 1In Theorem 1, we can replace Px(y) and Px,(y) by Nx(y) and Nx, (y) respec-
tively, the theorem is also true. The same remark applies to all the following theorems
and corollaries.

Theorem 2 Let E and Y be Hausdorff lopological vector spaces and X be a para-
compacl convex subsel of E, and K be a non-empety compact convex subset of X. Lel
L:X — L,(E,Y) be a continuous mapping, and H : X — 2Y be a w.u.h.c. set valued
mapping such that for each z € X, H(z) is a non-empty subset of Y. Then al lcast one
of the following conditions holds:

(a) There ezists zo € X such taht {0} and H(zo) can not be strictly separated by a closed
hyperplane in E.

(b) There ezist z; € K and ¢y € L'(z1) " Px(zy) such that o(H(z1),é1) < 0.
(c) There exist x3 € X \ K and ¢3 € L'(z2)" ! P (z2) such that o(H(x1),¢2) < 0.
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Proof Suppose that (a) does not occur. Then for every z € X, there is ¢, € Y’ such
that o(H (z),¢.) < 0 = ¢,(0). We take & = Y’ and define the mapping S : X — 2% as
follows: '

S(e) = {6 € B | o(H(z),4) < O}z € X.

By weakly upper hemicontinuity of H, the set S~?(¢) is open in X for every ¢ € ®. From
Theorem 1, either (i) there exist z; € X and ¢; € S(z;) such that ¢; € L'(zl)'lpx(xi),
or (ii) there exist z2 € X \ K and ¢, € S(za) with ¢y € L'(z2) " Pk(z2). For (i), (b) is
valid if z; € K, and {c) is valid if z; € X \ K, since ¢; € L'(z1) ' Px(z1) € L'(z1) Pk (z1)
and ¢; € S(z;). For (ii), condition (c) is valid. This completes the proof.

Remark If L'(z) is inveritble for every z € int(.X), then Theorem 2 remains true if
condition (b) is replaced by (b’): There exist z; € K N BdX and ¢1 € L'(z1)~!Px(z1)
such that o(H(z1),¢1) < 0. The same remark applies to the fcllowing theorems and
corollaries.

Corollary Let E,Y,X,K,L be the same as in Theorem 2. Let F : X — 2’ and
G:X -2 be u.h.c. set-valued mappings on X such that F(z) # 0,G(z) # 0, for every
z € X. Then at least one of the following conditions holds:

(a) There exists zo € X such that F(zo) and G(zp) can not be strictly separated by a
closed hyperplane in E.

(b) There ezistz; € K and ¢y € L'(z1) " Px(z1) such that o(F(zy1), ¢1)+0(G(z1), —$1) <
0.

(¢) There exist zo € X\K and ¢3 € L'(z2) " P (z3) such that o(F(z2), ¢2)+0(G(z3), —b2)
< 0.

Proof Take H = F — G. Since F and G are u.h.c., H is u.h.c. on X. For every
z € X,{0} and H(x) can be strictly separated iff that F(z) and G(z) can be strictly
separated. Hence the corollary follows from Theorem 2.

3 Existence of Equilibrium Point and Coincidence Theorems

Theoremi 3 Let E be a Hausdorff topological vector space and X be a paracompact
vonvez subset of E, and K be a non-empty compact convez subset of X. LetY be a locally
convez Hausdorff topological vector space and L : X — L, (E,Y) be a continuous mapping.
Let H: X — 2Y be a w.w.h.c. set-valued mapping such that the following conditions are
satisified

(a) For each z € X, H(z) is a non-empty closed convex subset of Y.
(b) For any z € K and ¢ € L'(z) ' Px(z), o(H{z),4) > 0.
(c) Foranyze X\ K and ¢ € L'(z) ' Px(z), o(H(z),¢) > 0.



Then there ezists a point 2o € X such that 0 € H(zo).

Proof By Theorem 2, there exists a point zg € X such that {0} and H(zo) can not
be strictly separated. Since Y is locally convex and {0} is compact and H(zg) is closed
convex, we have 0 € H(zp). This completes the proof.

Theorem 3 generalizes a theorem of Simons [7, Theorem 3.1, p.1138].

Lemma 5 Let E,Y, X, L be as in Theorem 8 and C a convez subset of X. Let H : X — 27
be a set-valued mapping such that for each z € X, H(x) is a non-empty conver subset of

Y. Then

> d[H(z), cl( L(z)Tc(x))] = 0 <= o(H(z),4) > O for all ¢ € L'(z) "' Pc(z) and allz € X,
i&
where dy(A, B) = inf{|¢(z — y}| | z € A and y € B} as in [10].

Proof =—. If it is not true, then there exist z € X and ¢o € L'(z) " Pc(z) such that
o(H(X),¢0) <0, i.e., for each y € H(z), do(y) < 0.

On the other hand, —L'(x)¢o € T () since ¢ € L'(z) 1 Pc(z). So that ¢o(L(z)z) =
(L'(z)po)z > O for all z € T¢(z), ie., do(u) > O for all u € L(z)T¢c(z). Then we have

dgo [H (x)»cl(L('I)TC(x))} = dyg,[H(z), L(z)Tc(z)]
= ¢0( )-~ Sup ¢0(y) _J(H(I):¢0) >0,

uEL(z)Tc( )

which is a contradiction.

<=. For z € X and ¢ € Y', if infucp(s) |#(u)] = O, then dy(H(z),cl(L(z)Tc(z))) <
infueq(z) [$(u)| = O since 0 € cl(L(z)Tc(z)). So we can suppose infuecp(s) {#(u)| > 0, it
follows that 0 ¢ H(z) and either sup cp(,) $(y) < O or infyep () ¢(y) > O, since if there
exist y1,y2 € H(z) with ¢(y1) < 0 and ¢(yz) > 0. Then take A = (yz)/[ (v2) — #(w1)]
and yo = Ay1 + (1 — A)yz, we have A € (0,1) and yp € H(z) since H(z) is convex and that
#(yo) = O gives a contradiction.

If supey(z) $(y) <0, ie., 0(H(z),$) < O, then ¢ ¢ L'(z)"1Pc(z), L' (z)¢ & Pc(z) =
—~T;5 (z), so there exists u € Tc(z) with ¢(L(z)u) = (L'(z)¢)u < 0. Let y = L(z)u,
then y € L(z)Tc(z) and ¢(y) < 0. For every v € H(z), there exists A > 0 such that
#(v) = A(y) = #()y) since $(v) < 0. Therefore Ay = L(z)(Au) € L(z)Tc(z) implies
44l (2), I L(2)To(2)] < (v — Av)| = 0.

For the case infycy(;) $(y) < 0, ie., o(H(z), —¢) < 0, we can repeat the above argu-
ment by replacing ¢ by —¢.

Corollary 1 Let E,X,K,Y,L,H be as in Theorem 8, and the following conditions be
satisfied:

(a) For each z € X, H(z) is a non-empty closed convez subset of Y.

(b) Esex dy[H (z), el( L(z)Tx(2))] = 0.
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(€) Xeexye dy(H(z), cl(L(z)Tx(2))] =
pey’

Then there exists zo € X such that 0 € H(zo).
Corollary 1 is a generalization of a theorem in [2, Theorem 6, p.232|.

Corollary 2 Let E,X,K,Y,L be as in Theorem 3. Let F: X — 2¥ and G : X — 2Y be
u.h.c. set-valued mappings such that

(a) For each z € X, F(z) and G(z) are non-empty closed convez subsets of Y, at least
one of which is compact.

(b) 5 sex dglF(2) — G(e), cl(L(=)Tx(=))] = .
pcy!

(c) E’fg}’f dy[F(z) - G(z), l(L(2)Tk(2))] =
Then there exists o € X such that F(zo) N G(zo) # 0.
Proof Take H = F — G. The corollary follows from Corollary 1.

Corollary 3 Let E,X,K,Y,L, F,G be as in Corollary 2, and let the following condilions
be satisfied:

(a) For each z € X,F(z) and G(z) are non-empty closed convex subsets of Y, at least
one of which is compact.

(b) For any z € K and ¢ € L'(z) 1 Px(z),0(F(z),¢) + o(G(z),—¢) > 0.
(c) Foranyz€ X\ K and ¢ € L'(z) 1Pk (z),0(F(z),¢) + o(G(z),—¢) > 0.
Then there exists zo € X with F(xo) N G(zo) # 0.

Proof It is an immediate consequence of Theorem 3 with H = F — G.

From the remark after Theorem 2, Corollary 2 and Coroallary 3 are generalizations of
Theorem 10 and Theorem 9 in [1] respectively. Corollary 3 is also a generalization of the
main result in [3], as well as Theorem 3.4 in {10] since, for any non-empty subsets K, L of X,
(K, L, F,G) is admissible if and only if for every z € K and every ¢ € Ni(z),0(F(z),9) +
o(G(z),—¢) > 0.

Theorem 4 Let E,X,K,Y,L,H be as in Theorem 8, and the following conditions be
satisfied:

(a) For eachze X, H(z) is a ﬁon-empty closed convez subset of Y.
(b) For any z € K and ¢ € L'(z) ! Px(z), one has

, pu—
ueL- l(z)H(z) inf inf [L'(z)¢(z + hu - 2)|/h = 0.

(c) For anyz € X\ K and ¢ € L'(z)" Px(z), one has

! —
et ey 156 2k 11/ (=)0 + hu = 2)l/h =0
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Then there exists o € X such that 0 € H(x0).

Proof It suffices to verify the conditions (b) and (c) of Theorem 3. For a non-cmpty
convex subset C of X and any z € X and ¢ € L'(z) ' Po(z), we have L'(z)¢ € Ic(z), i.e.,
L'(z)¢(z—2) <0, for all z € C. Suppose o(H(z),$) < 0. It follows that ¢(L(z)u) <0, for
allu € L~ Y(z) H(z). Hence |L'(z)d(z+hu—2z)| = L'(z)$(z—x)—h$(L(2)u) > ~hg(L(x)n),
for all z€ C and h > 0 and u € L™ (z)H(z). Therelore we have

- e e S o). o
ueL—l‘r(‘i)H(r)}»ggggglL(T)d’(“’+h“ 2)| > —o(H(2),4) >

This contradiction proves the theorem.

Corollary Let E,X,K,Y, L, F,G be as in Corollary 2 of Theorem 3, and the following
condilions be salisfied:

(a) For each x € X, F(z) and G(z) are non-emply closed convex subscls of Y, al least
onc¢ of which 1s compact.

(b) For anyz € K and ¢ € L'(x)”PX(I):

: NP e h(u— ) — 2/h =0,
et inf inf |L'(z)é(z + h(u = v) - 2)|/
vEL~1(z)G(x)

(c) Foranyz e X\ K and ¢ € L'(z) " Px(z),

'f .f'fL', : ~} ,—v_~|/>l,_-:0.
u.éL_llI}J)F(z) }llgo zng ! (T)¢(I —+ L(u L) z)"
veL-1(z)G()

Then there ezists zo € X wilk F(z0)} N G(zo) # 8.
The above corollary generalizes the main result in [4].

4 Fixed Point Theorems

We shall take Y = F throughout this section.

Theorem 5 Let E be a locally convez Hausdorff lopological veclor spoace and X be a
paracompact convez subsel of E and K be a non- emply compact convex subsel of X. Lel
L:X - L,(E,E) be a continuous mapping and F : X — 2% be an u.h.c. scl-valued
mapping such thal the following conditions are salisfied:

(a) For each z € X, F(z) is a non-empty closed convez subsel of E.
(b) Foranyze K andg € L'(z)"*Px(z),0(F(z),¢) > &(z) (or a(F(z), -¢)+¢(z) > 0).

(c) Fg; any z € X\ K and ¢ € L'(z) ' Px(z),0(F(z),$) > ¢(z) (or o{F(z), —¢)+¢(z) >
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Then there exists zo € X such that zo € F(zo).

Proof Take H(z) = F(z) — z (or H(z) = z — F(z)) for z € X, then the theorem follows
from Theorem 3.
Theorem 5 generalizes a result in [3, Theorem 2.2 & Theorem 2.4].

Theorem 6 Let E,X,K,L,F be as in Theorem 5 and suppose that

(a) For each z € X, F(z) is a non-empty closed convez subset of E.
(b)
Y d4(F(z), e[ L(z)Tx(z) + 2]} = 0,

2€K
$ey’

or

Y dy(F(@), ellz - L@Tx(@))) =0,
r=g

" dg(F(), ellL(=)Tx (x) +2]) = 0,
5k

or
Y dy(F(z), cllz — L(z)Tk(z)]) = 0.
LEX\K
¢y’
Then there exists o € X with zp € F(x0).

Proof Take H(z) = F(z) — z (or H(z) = z — F(z)) for z € X, then the theorem follows
from Corollary 1 of Theorem 3.
For z € E, define

Lx(z)={y€ E|y=1z+ oz — z) for some z € X and a > 0},
Ox(z)={y€ E|y=z— oz — z) for some z € X and a > 0},

Then cl [Ix(z)] = z + Tx(z) and cl [Ox(z)] = X — Tx(z)
Corellary Let E, X, K, F be as in Theorem 5. Suppose that
(a) For each z € X, F(z) is a non-empty closed convez subset of E.
(b)

S dy(Fa), clix (@) =0

zeknBdx
gy’
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or

Y dy(F(e), cllox(=))) =0

zER r\BdX
¢y’

> dy(F(z), cllIx(z))]) =0
rEX\K
$EY’

or

Y. dy(F(z), cllOx(2))]) =

2EX\K
pey!

Then there exists o € X with zo € F(zo).

Proof Note that remark after Theorem 2, this is a special case of Theorem 6 when L 1s
taken as an identity operator on E.

This Corollary is Theorem 3.5 in [10] which generalizes the results in [5] and [6], as
well as fixed point theorems for inward and outward mappings.

Theorem 7 Let E,X,K,F be as in Theorem 5. Suppose
(a) For each z € X, F(r) is a non-emply closed convez subset of E.

(b) For any r € KN BdX and ¢ € Px(x),

' — _— =
uclgt(. ),‘,‘;E.Jé‘f '$(z -+ h(u—z) - 2)]/h = 0.

(c) For anyz € X\ K and ¢ € Pg(x),

uclgt(' )Ar;gzlgf |¢(z + h(u — z) — 2)|/h = 0.

Then there exists o € X such that o € F(zo).

Proof This is a special case of Corollary of Theorem 4, if we take L(z) as an identity
operator and G(z) = {7} for all z €-X.

Theorem 7 generalizes a result in [4] which is a generalization of Reich’s fixed point
theorem [5].

5 Matching Theorems

Theorem 8 Let X bhe a paracompact conver subset in a Hausdorffl topological veclor
space E and K be a non-empty compact convex subsel of X. Lel Y be a locally convex
Hausforfl topological veclor space and L : X — L(E,Y) be a conlinuous mapping. Let
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{A; | i€} and {B; | j € J} be two locally finite families of relatively closcd subsels of X
such that Uicr Ai = UjegBj = X. Let {Ci|i €I} and {D; | j € J} be two corresponding
Jamilies of non-emply subsects of Y such that, for each z € X, eilher Uyea,C; or Uszen; Dj
s contained in a compact convez subsel of Y. Suppose that for each z € X, Lhere exists
(1,7) € I x J such that z € A; N B; and

>_ d4(Ci = Dj, el L(z)Tx (+)]) = 0,
bEV"

Z d¢(C.~ - Dj, cl[L(I)TK'(I:)]) =0.
TEX\K
¢cY!

Then there exist lwo non-empty finile subsets Iy,C I and Jo C J such thal (Nier, A:) N
(ijJ‘)Bj) #£ 0 and
cleo(Uier,Ci) N cleo(Ujey, Dj) # 6,
where cleo(A) denotes the closed convez hull of a set A.
Using Coroilary 2 of Theorem 3, the proof is analoguous to the proof of Theorem 11
in [1]. In the same way, we have the following result.

Theorem 8 Let E, X, K,Y, L be as in Theorem 8 and {A; | 1 € I} bc a locally finite family
of relatively closed subsets of X with Uje;A; = X. Lel {C; | i € I} be a corresponding
family of non-empty subsels of Y. Suppose thal for each z € X, there exists i € I such
that z € A; an

> dy(Ci, el L(z)Tx (z)]) =0,
&

2= dg(Ci ellL(2)Tk (2)]) = 0.
ert

Then there ezists a non-empty finile subset Iy C I such thalt Niep, A; # ® and 0 €
chO(U;GIUC").
Theorem 8 and Theorem 9 are gencralizations of the corresponding results in [1].

References

{1] K.Fan, Some properlies of convez sets relaled to fized point theorems, Math. Annl,,
266(1984), 519-537.

[2] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag,Berlin, Heidelberg,
New York, Tokyo, 1984.

(3] Jiang Jiahe, Fized point theorems for multi-valued mappings in locally convez spaccs,
Acta. Mathematica Sinica, 25(1982), 365-373.

[4] Jiang Jiahe, Generalizalion of S. Reich’s two fized poinl theorems, Acta. Mathematica
Sinica, 24(1981), 359-364.

— 359 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



[5] S. Reich, Fized points in locally convez space, Math. Zeit., 125(1972), 17-31.

(6] B.R. Halpern, Fized point theorems for set-valued mapps in infinite dimensional
spaces, Math. Annl., 189(1970), 87-98.

[7) S. Simons, An ezistence theorem for quasiconcave functions with applications, Non-
linear Analysis, Theory, Methods & Applications, 10(1986), 1133-1152.

(8] M. Lassonde, On the use of KKM multifunctions in fized point theory and related
topics, J. Math. Anal. Appl.,97(1983), 151~ 201.

[9] K. Yosida, Functional 4nalysis, Fifth Edition, Springer-Verlag, Berlin, Heidelberg,
New Yrok, 1978.

[10] Jiang Jiahe, Fized point theorems for paracompact convez sets, Acta. Mathematica
Sinica, New series, 4(1988), 64-71.

EERRW A= FIHE

Mo ¥
Cilly B30 K% BOF 2. 2731065)

3
AP T R SCTE DR 0 S b S BT R 1) (L T B T (TR B A T i
i A AU YR T SO AR E )T — B E ) 45 R

— 360 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



