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Introduction

Throughout this paper all rings are associative and have an identity, and all modules
are right unitary modules unless otherwise indicated. Also, the phrase R is a subring
of S will always imply that R and S have the same identity. If A is a ring and Ny is a
submodule of the A—module M4 the notation N4|M,4 means that N4 is a direct summand
ol My.

Suppose that R is a subring of the ring S. The ring S is a normalizing extension of
R if there is a finite set {aj,az,---,a,} C S such that § = Y. | Ra; with Ra; = o;R
for each 1, and S is a free normalizing extension of R if in addition a; = 1 and S is [ree
with basis {aj,a;,---,a,} as both a right and left R—module. S is an excellent extension
of R, if S is a free normahzmg extension of R and S is R—projective:that is, if Ng is a
submodule of Mg, then Ng|Mpg implies Ng|Ms.

There are several papers to discuss the relationship between R—modules and §—modules
when S is a normalizing extension or an excellent extension of R, for instance, see [1,2,4,5].
In this paper, we will continue these investigations.

When a ring S is an extension of a ring R with the same identity, for every R module
M, M®pgS and Homg(S, M) are S—modules under the natural module operations. If ¢ is
an automorphism of the ring R and M is an R—module, we can define ancther R—module
structure by the law “0” mor = mr? for m € M,r € R and denote this R—module as
Me. '

Let S be a free normalizing extension of R with basis {a; = 1,as, -+,a,}. Then
for each aj, there is an automorphism o; of R : o(r) = ¢, where a;r = r'a;,r,r' € R.
Therefore,M @r S = O (M ® a;) = M and Homg(S, M) = & Homg(a;R, M) =

n M%7 as R—modules.

Semisimple modules

By [1, Theorem 3|, we knew that if S is an excellent extension of R, then R—module
M semisimple implies S—modules M @g S semisimple and S—module Mg semisimple
implies R—module Mg semisimple. Now, we show that the converse is true.
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Proposition 1 Lel S be an excellent extension of R.

(1) If M is an R—module, then R—module M Qg S semisimple implies R—module M
semassmple. .

(2) If M is an S—module, then R—module Mg semisimple implies S—module Mg
semisimple.

Proof (1). If (M ®g S)s is semisimple, then R—module (M ®g S)r is semisimple. So,
Mr=2MQ®1C (M®RgS)g is semisimple.

' (2). Let S—module Ns be a submodule of Mg. Then N as an R—module is a
submodule of Mg. Since Mg is semisimple, Ng|Mg. Therefore, Ng|Ms and this proves
that Mg is semisimple. 0O

Similarly, we also have

Proposition 2 If S is an ezcellent extension of R and M is an R—module, then
S—module Homp(S, M) is semisimple if and only if R—module M is semisimple.

Proof By (1, Theorem 3] and Proposition 1, S—module Homz(S, M) is semisimple if
and only if Homg(S, M) is semisimple as an R—module. On the other hand, we can see
that R—module Hompg(S, M) is semisimple if and only if R—module M is semisimple since
Hompg(S, M) = ?le"-'_l as R—~modules. The conclusion is now clear. O

Direct Summands of modules

Proposition 3 If S is a free normalizing exlension or R and N is a submodule of the
R-module Mg, then

(1) NQ®rS|MQ®rS as S—module if and only if Ng|Mg.

(2) Hompg(S,N)|Homg(S, M) as S—modules if and only if Np|Mg.

Proof If Nr|MRg, then there is an R—submodule Tg of Mg such that Ng @ Tp = Mpg.
Thus (N ®z ) ® (T ®r S) = M ®& S and Tlomg(S, N) ® Homg(S,T) = Homg(S, M).
So N ®gr S|M ®g S and Homg (S, N)|Hompg(S, M).

Conversely, suppose that Homg(S, N)|Hompg(S, M).Then there is an S—submodule
T of Hompg(S, M), such that Homp(S,N) & T = Hompg(S,M). Let V = {m € M :
there exist my,---,mp,} € N and an [ € T such that f(1) = m and f(a;) = my for
1t =2,--+,n}. Obviously, V is an R—submodule of M and V N N = 0. For each m € M,
define f € Homg(S,M) by f(1) = m, f(a;) =0, for { = 2,--- n. Thus [ = f; + f,
where fi € Homg(S,N),f: € T. So f2(a;) = —f1(a;) € N, for i = 2,---,n. Hence
m = f1(1) + f2(1), where f;(1) € N and f;(1) € V. Then M = N ®V and Ng|Mg.

A similar argument can prove that N g S|M ®g S implies Ng|Mg. O

Essential Submodules

In the following, the notation Ng <> Mg means that the R—module Ng is an essential
submodule of the R—module Mg. In [5] it has been proved that if S is a normalizing
extension of R, then Ng —» Mg implies Homg (S, N) > Homg(S, M) as R—modules and
as S —modules.
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Next we have the corresponding result for tensor products.

Proposition 4 Let S be a normalizing extension of R, Nr be a submodule of Mp and
the inclusion mapi: N®r S — M Qr S be a monomorphism, then Ng - Mg implies
N®rS 5 M®grS as R—modules and consequently as S—modules.

Proof Suppose that 0 # T is an R—submodule of MQg .S, we show that (N®rS)NT # 0.

Let V; = {m € M : there exist my, -, m;_{,mi41, -+, m, such that m ® a; +
E#i m;j®a, € T}, fori =1,2,--+,n. Obviously, each V;,¢ = 1,2,--- ,nisan R—submodule
of M. Since T # 0,V;,i = 1,2,--+,n are not all zero. Choose V;, # 0 with the least 1;,
then V;;, NN # 0. Take Ty = ("L, mi®a; € Tym;, € V;; NN}. Thus0#T1 C T
and il is an R—-submodule of M ® g S. Replace T by T}, and consider Vj' ={meM:
there exist mg,, -+, m;_y1,mj41,°+-,my such that m@a; + 3, mp ® ax € Ty} for each
7 >4+ 1. IfVJ-' =0,forall j >4+ 1, then Ty = (V;; NN)®a; C NQr S and
(N ®r S)NT # 0. Otherwise, choose V,, # 0 with the least 13. Then VioNN #0
and we take Ty = {3 m; @ a; € Ty,my, € Vi'z NN} ThusO0# T, C T, and it is an
R-submodule of M ®g S.

Going on in this way, we can get 0 # T} C T and 7} C NQg S, so that (N®rS)NT # 0.
Therefore, N @ S 2 M ®g S as R—modules and as S —modules.

Proposition 5 Let S be a free normalizing extension of R and lel Ng be a submodule
of Mp. Then Ng > Mg if N®p S > M ®g S or if Homg(S,N) = Hompg(S, M) as

S —modules.

Proof If N®@rS - M®gS as S—modules, then N®rS - M®gS as R—modules by [4,
Proposition 1.1]. But N®gS = @, N° and M®gS = M as R—modules. Thus we have
Ng - Mg. A similar argument can be used in the case of Homgz(S, N) = Hompg(S, M).

Injective modules

For injective modules it is known that if S is a normalizing extension of R and M is an
R—module, then Homg(S, M) is S—injective if and only if M is R—injective [5, Corollary
2|. Here we consider the other cases.

Proposition 6 Let S be a free normalizing extension of R. Then (1} S—module Mg
S—injective implies Mp R—injective, (2) if M is an R—module, M ®p S S—injective
implies Mp R—injective.

Proof (1) If Ms is S—injective, then My is isomorphic to a direct summand of an
S —module of the form Hom, (S, D) with D a divisible Abelian group by [3, Corollary 5.5.4].
But Hom,(S, D) = &, Hom,(Ra;, D) as R—modules. Because each Hom,(Ra;, D) =
Hom, (R, D) is Rinjective, it follows that Hom,(S, D)) is R~injective. Hence Mg, a direct
summand of the R—module Hom, (s, D), is R—injective.

(2) For every R—monomorphism f : Mp — Bp,themap f® 1: M®r S — B®r S
is an S—monomorphism since S is a free R—module. If M ®r S is S—injective, then
Im(f®1)|B®r S, that is, Imf ® S|B ®g S. Thus Imf|Br by Proposition 3. This proves
that Mg is R—injective. 0O
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Propposition 7 Let S be an ezcellent extension of R. (1) If M is an S—module,
then Mp R—injective implies Mg S—injective, (2) R—module M is R—injective implies
S—-module M ®p S be S—injective.

Proof (1) In order to prove that Mg is S —injectivé, we only need show that for every
S—monomorphism f : Mg — Bg, (Imf)g|Bs. In fact, f is also an R—monomorphism, so
(Imf) 5| Br since Mg is R—injective. Hence (Imf)¢|Bgs because S is an excellent extension
of R. : .
(2) MQrS = &M% as R—modules. Since Mg is R—injective, each M is
R—injecitve. Thus M ®g S is R—injective and S—injective by (1). O

Projective modules

Proposition 8 Let S be a free mormalizing extension of R and M be and S—module,
then M 18 S—projective implies M be R—projective. If S is an excellent eztension of R,
then S—module M R—projective tmplies M S—projective.

Proof Suppose that Mg is S—projective. Then Mg is a direct summand of a free
S—module. Since S is a free R—module, Mg is a direct summand of a free R—module
and so Mg is R—projective.

Suppose that S—module M is R—projective. Let f : Ag — Mg be an S —epimorphism.
Then f is also an R—epimorphism. Thus (Kerf)g|ARr, and therefore, (Kerf)s|As since
S is an excellent extension of R. This proves that Mg is S—projective. O

As is well known, if R is subring of S and R—module M is R—projective, then M Qg S
is S —projective.

Using Proposition 8, the following proposition can be obtained immediateiy.

Proposition 9 If S s an ezcellent extension of R and M 1is a projective R—module,
then Hompg(S, P) is S—projective.

Proposition 10 Let S be a free normalizing eztension of R and let M be an R—module.
(1) M ®grS S—projective implies M R—projective. -
(2) Homg(S, M) S—projective implies M R—projective.
Notice that in these cases, M Qg S = @}, M? and Hompg(S, M) = &, M.

/

Flat modules

It is easy to see that when R is a subring of S and R—module M is an R—flat module,
then S—module M ®pg S is an S—flat module. On the other hand, we have the following.

Propesition 11 If S is a free normalizing extension af“R and M is an R—module, then
M ®gr S S—flat implies M R—flat. :

Proof Consider a left R—monomorphism f :p A — g B. Since S is a free R—module, 1®
f:S®rA — S®pgB is aleft S—monomorphism. So,1®(1®f) : (MRrS)Rs(S®rA) —
(M®rS)®s(S®r B) is a monomorphism. But (M®rS)®s(S®rA) = (MQrS)®rA, and
(M®rS)®s(S®rB) = (M®rS)®rB. Sowe have 18 f : (MOrS)QrA — (MQrS)QrB
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is a monomorphism. Since Mp % (M ®r1)p CMQ®rS, 1f : MQ@rA— MQgrBis
a monomorphism. Hence M is an R—flat module. O

Proposition 12 Let S be an excellent extension of R.
(1) S—module M is S—flat if and only +f M is R—flat.
(2) R—module M is R—flat if and only if Homp(S, M) is S—flat.

Proof (1) If M is S—flat for every left R—~monomorphsim f :p A —»g B,1®f : SQrA —
S ®g B is a left S—monomorphism. Thus, 19 (1® f) : M®s (S®r A) - M ®5 (S ®r B)
is monomorphism. So,1® f: M ®r A — M ®pr B is a monomorphism. Therefore, M is
R-flat. (Remark: Here is only needed that S is a free normalizing extension of R).

Conversely, if M is R—flat, then M ®g S is S—flat. According to [2, Lemma 1],
M;s|(M ®r S)s, therefore, Mg is S—flat.

(2) Since Hompg(S, M) = @* ;M% ™" as R—modules. Homg(S, M) is R—flat if and
only if M is R—flat. But Hompg(S, M) is S—flat if and only if Homg(S, M) is R—flat.
The conclusion is clear. 0O

Projective covers

If M is an R—module, an R—epimorphism £ : Pp — Mpg is called a projective cover
of M if Pp is projective and Kerf is small in Mg, the latter is denoted by Keré 5 Mpg.

Proposition 13 Let S be a free normalizing extension of R and M be an R—module.
If MR has a projective cover £ : Pp — Mpg then (M Qg S)s has a projective cover
§®1:P®r S~ MQ®rS.

Proof Obviously, PQg S is S—projective and £ ®1 is an S—epimorphism. It remains to
show that Ker(£®1) > P®gS. Since POgS = & ,(P®a;) and Mg S = ®F_,(M®a;),
it is easy to see that Ker(¢ ® 1) = 1, (Ker¢ ® a;).

Suppose that Ker(§®1)+7 = PQg S, where T is an S—submodule of P®g S. Then
(Keré @ a;) + (@ (Kerf ® a;) + T) = @, (P ® a;). We have that @, (Keré ®a;)+T 2
P ® a;, since Ker¢ > Pg. Furthermore, ®F ,(Ker ® a;) + T = @, (Kerf ® ;).

Going on in this way, finally, we have T = @ ;(P ® a;) = P ®g S. This shows that
Ker(€ ® 1) > P ®g S and completes the proof. 0O

Proposition 14 Let S be an ezcellent extension of R and let M be an R—module. If
R—module M has a projective cover £ : PR — Mg, then S—module Homg(S, M) has a
projective cover Homp(1,£) : Homg(S, P) — Homg(S, M).

Proof Since S is an excellent extension of R, P R—projective implies Homg(S, P)
S—projective by Proposition 9. For every h € Homp(S, M). Let h(a;) = m; € M,i =
1,2,---,n. Take p; € P,i = 1,2,---,n such that £(p;) = m;,7 = 1,2,---,n and construct
g € Homg(S, P) by g(a;) = pi,$ = 1,2,-++,n. Then Hom(1, £)(g9) = €9 = h. Therefore,
Hom(1, £) is an epimorphism. It remains to show that Ker(Hom(1, £)) = Homg(S, P)
In fact, Ker(Hom(1,€)) = {9 € Hompg(S,P) : g(a;) C Ker{,i = 1,2,-.-,n}. Let
Ker;(Hom(1, §) = {g € Homg(S, P) : g(a;) C Ker£,g(a;) = 0 for all § # {}. Obviously,
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Ker(Hom(1, ¢)) = Y-, Ker;(Hom(1, f)) and each Ker;(Hom(1, £)) is an R——rr\odule Now,

we prove that each Ker,(Hom(l £)) > Hompg(S, P) as R—modules.

Suppose that Ker;(Hom(1,¢)) + T = Hompg(S,P), where T is an R—module of
Hompg(S,P). We have to show that T = Hompg(S,P). Let Homg(S,P); = {g €
Hompg(S,P) 1 ¢(a;) = 0,5 #4i},and T; = {g € T : g(aj) = 0,7 # 1}. Then Ker;(Hom(1, £))+
T; = Homg(S, P);, and hence Ker¢ + Ti(a;) = P, where T;(a;) = {g9(a;} : g € T;}. OL-
viously, Ti(a;) is an R—submodule of Pg and so T;{a;} = P since Ker{ 2 P. Therefc::
T; = Hompg(S,P); and T = HomR(S P).

Because each Ker;(Hom(l,¢)) — Homp(S,P), it follows that Ker(Hom{* ™ .
Hompg(S, P) as R—modules and as S—modules. This proves that Hom(1, E) HomR(q P
— Hompg (S, M) is a projective cover of Homg(S,M). O

O
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