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1. Introduction

It is well known that a set s of all random vatiables of a probability space ({1, 0, ) into
a separable metric space (M, d) can form an E-space{l], because for any p,g € s,d(p,9)
is a random variable. But if (M, d) is a nonseparable metric space, maybe d(p,g) isn’t a
random variable. We haven’t see any paper about the spaces of the random variables with
value in a nonseparable metric space up to now.

In this paper, first, we show that a set of random variables of a probability space into
a metric space (separable or nonseparable) can form a random metric space, and a set of
all random variables of a probability space into a normed linear space can be embeded
into a randim normed linear space. Then we indicate the application in random operators.
Finally, the representation of the almost surely bounded random linear functionals is given
unifiedly.

2. Preliminaries

Throughout this paper (2,0, ) denotes a probability measure space, L* (1) the set
of almost surely finite and nonnegative real- valued random variables, J the set of all
positive integers, Dt the set of all nondecreasing left-continuous functions F : R — [0, 1]
with F(0) = 0, inf F(z) =0, and sup F(z) = 1.

For detailed definitions of probazbilistic metric space (briefly, PM space), random metric
space (briefly, RM space), probabilistic normed space (briefly, PN space), we refer to [1].

Definition 2.1 A random normed space (briefly, RN space) is an ordered pair (S, X),
‘where S is a linear space over number field k, and X is a mapping from S into L*(Q)
such that for any p,g € s,a € k:

(1) Xp(w)=0 a5 p=0,
(2) Xap(w) = || - Xp(w) - a.s,
(3) Xp+ q(w) < Xp(w) + Xq(w) a.s.
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Definition 2.2 A4 mapping V of a probability space (,0,1) tnto e metric space (M,d)
1s called: !

(1) a M-valued random variable if the inverse image of every Borel subset of set M
under the mapping V belings to o.

(2) a simple random variable +f there exists a finite subdivision {A.}k_, C o satisfying
UE_1An = Q and {X,}5_, € M such that V(w) = X, forw € A, n=1,2,--- k.

(8) a strong random variable if there exists a sequence of the simple random variables
{V,} such that {V,,} almost surely converges to V.

Definition 2.3 Let (S;, 7#)) (i = 1,2) be PM spaces. Then (Sy, F(V)) is isometric to
(S2, @), if there exist a bijective mapping ¢ : S; — Sy such that F®) (yp,vg) = FM(p, q)
for any p,q € S;. Meanwhile (Sy, 7)) is isometrically isomorphism to (S, 7)), if
(S:, W) are PN spaces and 1 is a linear mapping.

Definition 2.4 Let (B,|| - ||) be a normed linear space over number field k, B* be its
conjugate space. Then

(1) V : @1 — B* is called a weak random variable, if for any f € B*,f oV is a k-valued
random variable.

(2) V :Q — B* is called a W*-random variable, if for any z € B, (V (), z)is a k-valued

random variable.

Definition 2.5 Let E be the set of all almost surely finite real-valued random variables
defined on (Q,0,pu). For any f,g € E,f < g iff f(w) < g(w) a.s. . Then (E,<,V,A) 15 a
conditional complete lattice. Let AC E, and r: 1 — [—00,+00] be a almost surely finite
real-valued function (may be not @ random variable). r is called a generalized lower bound
of A, tfa > r for any a € A. The generalized upper bound of A can be defined analogously.

Denote that (E, 7) is a complete PM space, endowed with probabilistic metric ¥ :
E x E — D* defined by #(p,q) = Fpq = p{w € Q| |p(w) — ¢(w)| < t}. Further discussing,
we have that (E, 7, <)is a topological lattice.

Lemma 2.1 Let A be a subset of E with a generalized lower (upper) bound r, lower
orientable (upper orientable)

(1) A has the infimum ¢ = AA (supremum n =V A);

(2) there exists a decreasing sequence{an} (a increasing sequence {b,}) in A such that
{an} almost surely conveges to ¢({bn} a.s. conveges to n);

(8) ¢ zr(n<r).
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In addition, if A is closed then ¢ is the smallest element of A(7 is the greatest element
of A), and we have ¢ = AA € A(n =V A € A).

3. Main results

Theorem 3.1 Suppose S is a set of random variables of a probability space (1,0, 1) into
a metric space (M,d). Then there ezists a mapping X : S x S — L+ (1), such that (S, X)
18 @ random metric space, and the mapping X satisfies the following:

(1) d(p(w), q(w)) < Xpq(w), for any p,q € s, where Xpg(w) = X(p, ¢){w).
(2) Xpq(w) = d(p(w), q(w)), when d(p,q) belongs to LT(Q);

(8) if the elements in S are strong random variables, then the (S, ) is an E-space with
base (2,0, ) and target (M, d).

Proof Fof any p,ge& S, let

Apg = {s € L¥(Q) | ¢(w) > d(p(w),q(w)), 2. }.

We first prove that Ap, is nonempty. In fact, for any fixed zo € M, it is easy to prove
d(p(w), z0), d(z0, g(w)) € L(Q) (see (2)).

Since d(p(w), g(w)) < d(p(w), 0) + d(zo, 4()), we have d(p(w), z0) + d(z0, () € Apy-
Hence Ay, is nonempty.

Let r = d(p(w), g(w)).r is a generalized lower bound of A. Since A, is a closed, lower
orientable subset of L¥(w), so there exists a random variable ¢ € A,y C L*({1) such that
¢ is the smallest of Ay, i.e., ¢ = AAp,. Clearly, ¢ > d(p, q).

Difine X : S xS — LT(Q) by Xpq = X(p,q) = AApq, so that X,q € Apy € LT(Q),
and XPQ 2 d(p) q)

Obviously, if d(p, ¢) € L*((1), then d(p,q) = AApg = Xpq-

In order to prove that (S, X) is a random metric space, we only need to show the
triangular inequlity (see [1]).

Since d(p(w), r(w)) < d(p(w), ¢(w))+d(g(w), r{w)), for any p,q,r € S, and every w € 2,

d(p(w), ¢(w)) < Xpg(w) a.e; d(g(w),r(w)) £ Xpg(w) - a.e.,

it is clear that d(p(w),r(w)) < Xp(w) + X¢r(w) ace. , and Xpq + Xy € Apy. But X, =
AApp, hance Xp, < Xpg + Xgr.
For the proof of (3), refer to [1].

Theorem 3.2 Let L be a set of random variable of (Q,0,u) into a normed linear space
(B, || - II) over number field k, S be a linear space spanned by L (i.e.,every element of S a
linear combination of elements of L ). There exists a mapping X : S — Lt(Q) such that
(S, X) is a random normed space and for any P€ S : )

(1) |lp(w)|l € Xp(w), for any p € S, where Xp(w) = X(p)(w);
(2) Xp(w) = |lp(w)ll, when ||p(w)|| € L*(9);
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(8) if the elements of L are strong random variables, the (S, X) is an E-norm space ([5])
with base (U, 0, ) and target (B, |- ||)-

Proof is similar to Theorem 3.1.

Theorem 3.3 Let S be a linear space consisting of W*-random variables of (2,0, ) into
the conjugate space B* for a normed linear space (B,||-||). Then there exists a mapping
X :S — L*(Q) such that (S,X) 1s a random normed space, and satisfies:

Xp(w) = X(p)(w) =0 as. & (p(w),z) =0 as., for any z € B.

Proof Since |(p(w),z)| < ||p(w)]], for we any z € B with ||z|]| < 1, suppose X,(w) =

Vizj<1l{p(w), 2|, r(w) = [|lp(w)]], and A, = {|{p(w), z}| | ||zl < 1}.
Remanent proof is similar to theorem 3.1.

4. Applications

Definition 4.1 Let (B, ||-||) and (Y, ]|-||) be two normed spaces, a mapping T : (Q,0, u) x
(Byll- 1) — (VL)1) s called:

(1) a random linear operator if T(w,) : B — Y is a linear operator for every w € Q1 and
T(,z):Q —>Y is y-valued random variable for all z € B;

(2) a almost surely continvous random linear operator if there is a measurablr subset Qg
of Q with p(Qg) = 1 such that T'(w,-) : B —» Y is a continuous linear operator for
every w € (lp;

(3) a continuous random lLinear operator in probability if for any z, — zo and every
e>0
p{w € Q| ||T(w,zn — z0)|| > €} — 0, n — oo;

(4) a almost surely bounded random linear operator if there exists C(w) € L*((2) such
that
IT(w, Xl < C@IXI as. .

Remark If Y is nonseparable, then the sum of two Y-valued variable may not be a
random variable. Hence the sum of random operators may not be a random operator.
But we consider the random normed space (S, X) spanned by Y-valued random variables.
A random linear operator can be regarded as a linear operator from (B, || - ||) into (S, X).
So two random linear operator, regarded as linear operators from (B, || - ||) into (S, X),
can be made algebraic operations.

Theorem 4.1 Let (S,X) be a complete random metric space, T : S — S be an almost
surely contraction mapping, t.e., there exists a(w) € L1(Q1) with 0 < a(w) < 1 a.s. , such
that X7pre(w) < a(w)Xpe(w) a- s, for any p,q € S, then T has the only fized point.

Remark Using Theorem 3.1, we have that Theorem 4.1 is far wider than the conclusions
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in [2].

Theorem 4.2 Let {T, | « € A} be a random linear operator family of QU x (X, |}-||) into
(Y, - I}, which are continuous in probability, where A is a indez set (B,|| - ||) e Banach
space if {T, | @ € A} is pointwise bounded, i.c., for svery z € X.

{To(, X) | @ € A} is a probabilistically bounded set, then {T, | o € A} is a equicon-
tinuous random linear operator famaly.

Using Corollary 3 in [6], we can complete the proof.

Lemma 4.14  Let M(Q,0,u), L(2,0,u) be the set of all essential bounded K -valued
random variables and bounded K -valued random variables, respectively. x € M,y € L,

define ||z||m = i o |2(@) llvllz = sup [y(w)]. Then (M, |- llar) and (L, |j-lz) are

Banach space. There exists a linear isometric mapping J : M — L with Jx = = a.s. , for
everyz € X. Where K 1s R or C.

Theorem 4.3 Let (B,||-||) be a normed linear space over number field K.f : (O x B — k
is an almost surely bounded radom linear functional (i.e., there exists C(w) € LT (Q) such
that for every z € Bf(z,w)| < C(w)||z|| a.s. .), if and only if there is a W*- random
variable V of Q1 into B*, such that for every z € B, f(z,w) = (V(w),z) as..

Proof Since for every z € B, |f(z,w)] < C(w)l|z]] as., hence

Af@)l

S 1S <|z|| as.
So
_C_I(%()(fi—li e M(Q,0,u). (%)
Using Lemma 4.1, we suppose
: fw,z)

fw,z) = (Clw) + 1)J[; I

Clw)+1
It follows that F(w,z) = f(w,z) a.s..
Since C(w) € L*(Q), there is no harm in assuming C(w) < +oo, hence for every
w € Q, f(w,-) is a bounded linear functional on B. In fact, using (*) and Lemma 4.1, we
have

|f(w,2)] < [Cw)+1] -jlég 1L

i

Let V : @ — B* defined by V(w) = f(w, ). Then it is easily proved that V(w) is

W*-random variable. Therefore f(w,z) = f(w,z) = (V(w),z) as.. Inversely, if there
is a W*-random variable V : @ — B* such that flw,z) = (V(w),x) a.s.. LetC(w) =
Vizj<1l{V (w), z)| € L*(Q), we have |f(w,z)| < C(w) - ||z]| as., for eveay z € B.
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Remark The RN space consisting of all almost surely bounded linear functionals on is
isometrically isomorphism to the RN space, which consists of all W*-random variables.

Example 1 Let f :  x Cla,b] — R be a continuous random linear functional. Then
there is a W*-random variable V : 2 — Bla, b}, such that f(w,z(t)) = [ z(t)dv(w)(t),

where Bla,b] is Banach space, which consists of all bounded variation functions.

Example 2 Let f : Q x LPla,b] — R be a continuous random linear function with
p > 1. Then there is a random variable V' : @ — L%a,b], such that f(w,z(t)) =
Jiapy z(t)v(w)(t)dm, where 1 + 2=1.

Example 3 Let (B,}- ”) be a reflexive Banach space, f : 1 X B — K be a continuous
random linear functional. Then there exists a weak random variable V : 1 — B* such

that f(w,z) = (V(w), z).
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