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On Compact Submanifolds in a Sphere*

Chen Qing Xu Senlin
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Abstract. In this paper the Pinching theory for compact submanifolds in a unit
sphere is considered. We improve the Pinching constants of §.T. Yau and X.H. Mo for
compact submanifolds with parallel mean curvature in sphere and those of S.S. Chern
and Y.B. Shen for compact minimal submanifolds. For sectional curvature, we improve
the Pinching constant of Y.B. Shen.

Let M"™ be an n—dimensional compact submanifold in a unit sphere $”*7, § denotes
the squere of the length of the second fundamental form of the immersion: M™ <« S™tP,
In [1], S.T. Yau proved that if the mean curvature is parallel, and S is not greater than

1

n/(vn+3 - 5—_-_‘), (1)

1

then M™ lies in a totally geodesic S™*1.
On the other hand, if M™ is minimal, and

1
§<n/2-7) (2)

then M™ is totally geodesic, Clifford torus or Veronese surface in S* (refer to S.S. Chern,
M. Do Carmo, S. Kobayashi [2]).
The two kinds of Pinching constant are improved in this paper. We have

Theorem 1 Let M™ be an n—dimensional compact subman:ifold with parallel mean
curvature in ST withp> 2. n> 2, H #0. If

‘ 1 3
S < min{n/(2 — - 1),n/ n42—

} (3)

then M™ lies in a totally geodesic S™*!.

Theorem 2 Let M™ be an n—dimensional compact minimal submanifold, satisfying

S < n+2
“ hn+2

*Received Nov. 19, 1990. Work done under partial support by NNSFC and NECYSFC.

n, (4)
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then we have either

(1) M™ is totally geodesic in S™tP;
or _

(2) n=2,M? is the Veronese surface in S*.

In addition to that, we consider the Pinching theory for sectional curvature, and we
obtain

Theorem 3 Let M" be an n—dimensional compact minimal submanafold with constant
scalar curvature, if the sectional curvature of M™ is nowhere less than Cs = 1/2 — (3n +
2)/(2p(5n + 2)), then M™ is totally geodesic or the Veronese surface in S*.

Remark 1 Condition (3) is the improvement of (1) for the Pinching constant. And the
2 2
Pinching constant in [4] is rnax{ﬂl—Jrﬂ n(112H7)} in fact,

Vn-1+1’ /n+l
2 1 ay2 1 ay2 1
H* = EZ(Z H3) < ;Z(hﬁ) < ;S,
a i o,

1t follows that )

1
H? <
—max{m’\/ﬁ—‘l}’

taking this inequality into the preceding formula, we have

S < max{

n n }
vn—1 yn—-1"
So the Pinching constant in this paper is better than that in [4] when the dimension n is
a little larger.
Remark 2 Condition (4) is better than (2) under the assumption p > 3. In fact, the
costant [(3n + 2)/(5n + 2)]n in (4) is also better than the constant n/(1 + 1/%=1) in [3].

Remark 3 The constant Cs in Theorem 3 is better than the corresponding constnat
Cs =1/2 - (2nv/2n(n — 1))/(2p(n + 1) [3] when p and n satisfy the following inequality

3n+2 <p< B3n+2)(n+1)
n+2 5n+ 2

>

then

.. p—1 n
Cs < .
5 "mm{2p-1’2(n+l)}

Hence we partially improve the results of S.T. Yau [1] and T. Itoh [5].
We shall give the proof to these results in the next sections.

§1. Decreasing of the Codimension

Let M™ be an n—dimensional Riemannian manifold immersed isometrically is an (n +
p)—dimensional unit sphere S"*? (p > 2), we choose a local field of orthonormal frames
€1,€2,° ", entp in S™P such that restricted to MY the vectors e;, ez, -, e, are tangent
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to M"™. We shall make use of the following convention on the ranges of indices: 1 <
ABC, - - <n+pl1<i,jk---<nn+l1<apf,7, --<n+p, and we ahall agree that
repeated indices are summed over the respective ranges. With respect to the frame field
of S™*P chosen above, let wy,- -, wp+p be the field of dual frames. Then the structure
equations of S™*? are given by [1]

dwy = —ZWAB Awp, (1.1)
B

waB +wpy =0,

dwap = — ) wac Awcs + $aB, (1.2)
c
$aB = 5 Y Kapcpwe Awp,
C.D
Kapep = 64céBp — 6apéBC- (1.3)

We restrict these forms to M™, then

Zh wj, h = Y, (1.4)

(/Ja = 0, (15)
dwi; = — Zw;k A wij + g, (1.6)
k
ZRthlwk A wy, (17)
k|l
Rijki = Kijri + Z shit = Rahe), (1.8)

dwaﬁ = - Zwar Aweg + ﬂaﬂ;

Qap = Z RogriwieAr, (1.9)
k.l
Ropri = Y _(h%hG — h3hE,). (1.10)

3
We denote by B = Eauh ‘wiwje, the second fundamental form of M™ and § =
2aij(h ,])2 the length square of B. We denote by Hy the matrix (hJ;) for every a.
We call £ = 13 tr(Ha)eq the mean curvature vector, the length of it H =|| £ || is called
the length of the mean curvature.
If the mean curvature vector £ is parallel in the normal boundle, it is easy to know
H = constant. Suppose H # 0, let e, = £/H, therefore we have

trHy, =0 (e #n+1),trHp41 = nH, (1.11)
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Wntla =0, (1.12)

Hp1Hy = HyHy,y, forevery a. (1.13)
The proof of Theorem 1 is indeced from the inequality below.
Lemma Ifay,as,---,ap;b1,bs, -+, b, are 2n real numbers, satisfying Y ", b; = 0, then
we have

2 2
(Z aia;(bi — bj)z) (2n +6) (Z a; ) (z b?) . (1.14)
] 3
Proof By Schwarz inequality, we have

(Z a;a;(bi — bj)2) < (Z a?)? Z(bi - b;)*

= O a)? E(b;‘ + b} -+ 6b7b2 — 4b;b? — 4b7b;)

t

= (O_a?)? 2an4+6(Zb2 ]<(2n+6)z a?)? (> b))%

t

This completes the proof the the lemma.
Next, we give the proof of Theorem 1.
From (2.3) in [4] (refer to (7.8)-(7.12) in [1]), one can easily see that

S RLARL > nH Y tr(HaprHR)— D [tr(HaiiHp))?

B#n+1 . B#n+1 B#n+1 (1'15)
+n > (k) —(2——[2
B#n+1 B#n+1

Now fix a vector eg (8 # n-+1), from (1.11) and (1.13), let H, 1 and Hj be diagonalized
simultaneously, then we have

"Htr(Hn+1Hp) - [tr( Hyy1Hp)]?
- Z hn+1hn+l Zhn+lhﬂ

— Z[h:t‘+lh?]+l(h )2 hn+1hﬁh;1]-l-lhﬂ] (116)
£
1 ntlynt+lopf B \2
= Ezhn‘ hjj+ (hu‘h,‘j)-
t.J

Notice that trfg = >_; hﬁ- =0, from Lemma above, we have
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nHtl‘(H,H.IHﬁ) b [tl’(ﬁ +1Hﬁ)]

Vanie (B ()

- —\/"” S (hg)? )(Z(h

Substituting (1.17) into (1.15), we get

S HARG > (=P D - - 1) 3 )

v

(1.17)

B#n+1 ﬁ¢n+l B#En+1
I (1.18)
> Z (hgﬁ])z(n—Ms))
ﬁi.n-fl
i'J
where M = max{2 — ‘7%1,\/"—;:1}. When S < n/M,
1 p
58 20 (R = 3T (i)' + X WGARG >0, (1.19)
ptnt1 pEnt1 f#nt
iJ i.7.k 5,7

from which, it follows that Eﬂ¢"+l(hfj)2 is constant. Then (1.19) becomes equality, hence
l]
0= psnt hUAh,] > E#"“( ) (n — MS) > 0 and (1.18) becomes equality. So it is

2
)
easy to see

(1). When "*3 > 2 — -1 we have

> () =

B#n+1
Therefore, M™ lies in a totally geodesic S™+1;
(2). When "—*3 < 2- -1——, obviously 2 < n < 4, and "+3 #2- 5= 1, hence

\:"’Ls < 2- p— from which we obtain }_; ](h'”rl ?=0and H = O which contradicts
the assumption H # 0.
This completes the proof of Theorem 1.

Corollary Let n > 5 and the conditions in Theorem 1 are satisfied. Then M™ 1s a
totally umbilical submanifold in S™*1.

Proof From the Corollary of §2 in [4] and the fact /%2 > 2 - E%T’ when n > 5, it is
straightforward to see

N LA PP
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so we have the result at once. This completes the proof of the corollary.

§2. On Minimal Submanifold

In this section we make use of the frame field in [6].
Suppose M™ is minimal, i.e., H = 0. If UM is the unit tangent boundle over M" i.e.,
UM = Uzepmn U M,, where UM, = {u € TM,,|| u ||= 1}. We define a function

o:UM — R, _
o(u) = (B(u,u), B(u,u)),Vu € UM.(21.)

Since UM is compact, o attains its maximum at a vector in UM. Suppose that this vector
is ug € UM, for some point zg € M". If o(up) = 0, obviously, M" is totally geodesic. So
we let o(ug) # O in the following part.

The convention on the ranges of indices is the same that in §1. In the neighbourhood
of 2o, we choose a local field of orthonormal frames as in §1. By taking ug = e; and letting

B(uo, u0)/ || B(uo,uo) ||= en+1, (2.2)
at point zg, we have
Aty =0, a#n+1 (2.3)
Since e; is a maximal direction, at the point zg for any t,z%,---,z" € R, we have
n n
oley +t Z zkek) <1+ t? Z(a:k)z]z(hﬁrl)z. (2.4)
k=2 k=2

Expanding (2.4) in terms of t, we obtain

n
4RIy 2*RTE + O(t?) < 0.

k=2
In follows that
W =0 (k# 1) (2.5)
at point zp.
We now choose a proper frame e3,---,e, at op € M such that H,;; is diagonalized,
le.,
=0 (i # ). (26)

Once more expanding (2.4) in terms of t, we obtain

2 IR - R -2 D0 (RN -4 )0 D S} +0(®) <o

1#1 aFn+l aFn+lis#l
175
It follows that
2 D (A <A - AR (2.7)
afEn+1 .
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at point z.
In addition to that, from (2.3) above and (1.13) in 3], i.e.,

Y (hf1)* + D hfihfi <0,
[+ x
we get
rPREL <0 (2.8)
at point zg.
Now we give the proof of Theorem 2. All calculation is restricted at point zq.
Suppose M™ is not totally geodesic from the convention of (2.2), we have (2.3)-(2.8).
For u = Y ; u'e; € UM, since
o(e1) = (h"“) = ufgg})\(la(u) = max :;(Z hutul)? #£ 0, (2.9)
1]
it is straightforward to see
|REY) = max{lh"“'}. (2.10)

From (27) summing by index ¢, we get

2 Z (h$)? < no(es). (2.11)

afn+41
i

On the other hand, from (2.7) and (2.10), one can obtain

Y (A% < (BT = o(en). (2.12)

afn+1l
i

Making use of Ricci identical relation and (2.6), from (2.8) summing by index ¢, we have

0> Z REFH(RE Riyyi + R Rynd) + AT D A Rayng1,16(2.13)

a,t

= no(e1) — 20(e1) Z (hs, )2 - o(el)z h,':‘ﬂ 2,9 Z h""“h"‘H ;)2.

a¢r.u+l a#r.;-t-l
% 1
Substituting 2h 1A% > — (A1) — (h%*1)? into (2.13), we can obtain

0> no(e1) — 3o (e1) Z h$, )2 -o( €1)Z(hn+1 - (A+n) Z (h?s'ﬂ 2( ‘lxi)zy (2.14)

afn+1l aftn+l
i : i

where A > 0,u > 0, + u = 1. By (2.3), (2.10), (2.12), we have

0> nofer) = 3+ No(er) Y (hf)* — ole)) D_(AE)? ~ po(er) D (A1)

afntl H i#1
= no(e) — (3+ A)o(er) Z (hE)? — (1 + p)e(er) Z(hf‘i“ 2+ uo*(e).(2.15)
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Together with (2.11), (2.15) becomes

02 nofer) = (342~ Pho(er) I ()2~ (14 male) L(EE (216)
aZnt+l 1

Take A = (n + 2)/(3n + 2), therefore 1 + u = (5n +2)/(3n + 2),3 + XA — 2u/n = (10n +
4)/(3n + 2), substituting them into (2.16), we have

5n + 2 2 1 5n+2
0> - + Rt > - S)y > 0.
ol - 5l X R+ 208 2 ele)n - 559)

From o(e;) # 0, it follows that S = n(3n + 2)/(5n + 2). So the previous inequalitites
become equalities. Hence |hZTY| = |AZ?| (i # 1). By (1.12), we know

> (B3 = (AT (2.17)

aFn+1

Substituting (2.17) into (2.7), one can easily see
R = —hpl i £ 1. (2.18)

But Y; h%t! = 0, therefore n = 2.

Then the condition of the theorem becomes S < 4/3, i.e., the Gauss curvature K of
M? is not less than 1/3. From the well-known result of [5], we obtain that M? is the
Veronese surface in S*.

This completes the proof of Theorem 2.

Making use of the result above, we can prove Theorem 3 as follows: From the integra-
tion inequality (10.1) in [1], we obtain straightly

1
02/ S(2nKap + =S —n) 1, (2.19)
M p

where Kjs denotes the infinium of the sectional curvature of M™. From the assumption
of the theorem, we see S =constant. Suppose

3n+2
> = ™ (2.20)
substituting (2.20) into (2.19), we have
1 S ' 1 _3n+2
OZ/SK————— *1>/S’K— 0. 2.21

This contradiction. shows that (2.20) is also not true. Hence S < n(3n + 2)/(5n + 2).
Theorem 3 follows directly form Theorem 2.

This completes the proof Theorem 3.

On the other hand, from the proof of Theorem 2, it is easy to get
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Corollary Let M" be an n—dimensional compact minimal submanifold in S™*P, ifn >3
and S(z9) < n(3n+2)/(5n+2), then M™ is totally geodesic, where xo is the special point
in the proof of Theorem 2. '

Proof Suppose M™ is not totally geodesic, i.e., o(e1) # 0. We have

bn 4+ 2
3n+2

0> a(e1){n— S(zo)}.

Introducing S(z) < (3n + 2)/(5n + 2) into above inequality, we get

3n+2
S =
(=) = g iz"
In the same way as in the proof of Theorem 2, we obtain hA%T! = —h%f1 (i # 1), but

> AT =0, it follows that n = 2, it contradicts the fact n > 3.
This completes the proof of the Corollary.

References

{1] 8.T. Yau, Submanifolds with constant mean curvature, I, Amer. J. Math., 96(1974), 346-366,
II., 97(1975), 76-100. ‘

[2] 8.S. Chern, M. Do Carmo and S.Kobayashi, Minimal submanifolds of a sphere with second fun-
damental form of constant length, in Shiing-Shen Chern Selected Papers, 393—-409, Springer-
Verlag, 1978.

[3] Shen Y.B.,On intrinsic rigidity for minimal submanifolds in a sphere, Acta Sinica, (Ser A),
32(1989), 769-781. ‘

[4] Mo X.H., Submanifolds with parallel mean curvature in a Riemanniam manifold with constant
sectional curvature, Chinese Ann. of Math., 9A(1988), 530-540.

[6] T. Itoh,Addendum to my paper “On Veronese manifolds”, J. Math. Soc. Japan, 30(1978),
73-74.

f6] H. Cauchmzm,Min.imalsubmam'folds of a sphere with Rounded second fundamental form, Tran.
Amer. Math. Soc.,298(1986), 779- -791.

XTHENEFRK
BRom &% K% B K
CREFHEASHER, AT 230026)

mE
A 3CIT 30 B AR B B BCF WA 49 Pinching (1. BCHET S. T. Yau 5ENKH XRE
B TAT T4 1 3RA BB F MY Pinching UK S. S. Chern S5 — A £ EBH /N
FHiHHY Pinching R0 KHBHIRAGHEE A B M T o — 4 X AR Pinching H 3.

— 5831 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



