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Abian [1] introduced an order relation < (Abian’s order relation) in a reduced ring R
by defining z < y,z,y € R, if and only if 22 = zy. In [2,3], the relation < is introduced
in a (not necessarily associative) zero-product-associative (ZPA) reduced ring R and it is
shown that < is a partial order relation in R. We will study Abian’s order of the ZPA
reduced near-rings. Let N be a ZPA, ZPD reduced near-ring with identity 1.A is the set
of all idempotents of N. We show that (4, <) is a lattice and (4,A,V,',0,1) forms a
Boolean algebra by defining e A f =ef,eV f =e+ f —ef and ¢ = 1 ~ e. All results in
this paper generalize the parallel results in [1-4].

An algebra system N = (N, +,-,0) is called a (zero-symmetric) near-ring if (i) (N, +,0)
is a (not necessarily Abelian) group, (ii) (N,-) is a semigroup, (iii) z(y + z) = zy + zz, for
all z,y € N, and (iv) 0z = 0, for all £ € N. A (not necessarily associative) zero-symmetric
near-ring N is said to be zero-product-associative (ZPA) if a product of elements of N
which is equal to zero remains equal to zero no matter how its factors are associative. A
ZPA near-ring N without nonzero nilpotent elements is called a ZPA reduced near-ring.
Other terminologies can be found in [5].

We check easily that the following results in [2] is true for ZPA near-ring by similar
arguments.

Lemma 1 A ZPA near-ring N is reduced if and only if z* = 0 implies £ = 0, for all
€ N.

Lemma 2 In a ZPA reduced near-ring N, zy = 0 implies yz = 0, for all z,y € N.

Lemma 3 A ZPA reduced near-ring N has insertion-of- factors property, that is, Ty =
0,z,y € N, implies zny =0, for anyn& N.

Lemma 4 In a ZPA reduced near-ring N,zy---z,, = O (elements z's not necessarily
distinct) if and only if y1 - -+ yo = O, where yy - -+ y,, is a product (in any order whatsoever)
of all the distinct factors appearing in Ty -+ Z,,.

Now we introduce the notion of zero-product-distributive. A ZPA near- ring N is said
to be zero-product-distributive (ZPD) if and only if zy = 0,z,y € N, implies (z + y)n =
zn + yn, for all n € N. Many algebra systems are ZPA ZPD near-rings. For example,
ZPA rings, integral near-ring, and a reduced near-rings is ZPD since we have the following
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proposition.
Proposition 5 FEvery reduced near-ring N 1s ZPD.

Proof Let z,y € N such that zy = 0, then we have yz = 0. Hence we have z((z +
y)d — yd — zd) = 0 and y((z + y)d — yd — zd) = 0, so ((z + y)d — yd — zd)z = 0 and
((z+y)d—yd—zd)y = 0. Hence ((z+y)d— yd—zd)(z+y) = 0, so ((z+y)d—yd—zd)? = 0.
Since N is reduced, we have (z + y)d —td — zd = 0, (z + y)d = zd + yd.

Lemma 6 Ifz(y—z)=0,z,y€ N, where N is ZPD, then (y — z)n = yn — zn, for all
ne N.

Proof z(y—z) = Oimplies (y—z)z = 0by Lemma 2. N is ZPD,soyn = ((y—z)+z)n =
(y — z)n + zn, hence (y — z)n = yn — zn.

We introduce Abian’s order relation <on a ZPA ZPD near ring by defining z < y if
and only if z* = zy. Since we have Lemma 6, the proof of the following theorem is the
translation of the proof of the similar theorems in [2,3] and so will be omitted.

Theorem 7 Let N be ZPA ZPD near-ring. Then Abian’s order relation < is a partial
order on N if and only if N 1s reduced. In this case, (N,-, <) is a partially ordered groupoid,
namely if £ < y and a < b, then za < yb.

Theorem 8 If X s a subset of N such that sup X extsts, then for r € N, suprX and
sup Xr exist, and (i) suprX = rsup X, (ii) sup Xr = (sup X)r.

From now on, let N be a ZPA ZPD reduced near-ring with identity 1 and < Abian’s
partial order.

Lemma 9 Let S be a subset of idempotent elements of N, if sup S(inf S) ezists, then it
must be idempotent.

Proof Denote supS = z. Then s < z,forall s € S, s0s = s? = sz or s(z—1) = 0. Note
that N is ZPA, from Lemma 3, we have 0 = s(z(z — 1)) = s(z* — z) or s2? = sz = s?,
so s < z?, for all s € S, i.e., % is an upper bound of S. Hence z < 22, ie., 2 = zz?
or z(z — 2%) = 0. By Lemma 2 we have (z — z%)z = 0, so (z — z%)z?
(z — 2*)(—2%) = 0. From these facts, we have (z — 2?)? = 0,s0 z — 22 = 0, ie,z =z
since N is reduced. Hence £ = sup S is idempotent.

Denote inf S =y, then y < s, forall s € S, i.e., y? = ys or y(y — s) = 0. From Lemma

3, we have

= 0, and so
2

0=y(s(y—s)) = y(sy—s*) = y(sy—s) = (ys)(y—1) =y’ (vy—1) = y(y(y—1)) = y(v* —v),

so (y® — y)y = 0, and so (y? — y)y* = 0 by Lemma 4. Consequently (y* — y)? = 0, so
y}—y=0,y* =y, ie., inf § = y is idempotent.

Lemma 10 Let ¢ be an idempotent element of N. Then
(i) e(ne) = ne, for each n € N, (i) e 1s in the center of N.

Proof (i) From 0 = ¢(1 — ¢) we have (1 — e)e = 0 and 0 = (1 — €)(ne) for each n € N.
Thus ne = (1 — e+ €)(ne) = (1 — ¢)(ne) + e(ne) = e(ne).
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(i1) Since e(1 —€) = 0, 0 = e(n(1 — €)) = e(n — ne) = en — e(ne), we have en = e(ne).
From this and (i) we get ne = en, for each n € N.

Lemma 11 Let e be an idempotent element of N. Thenen+n =n-+en and ne+n =
n + ne, for eachn € N.

Proof It is enough to show en +n = n+en. Frome(le+1—¢ — 1) = 0, we get
(e+1—e—~1)e=0. From this we have (e+1-¢e—~1)2 =0,s0e+1—-e—1=0, ie.,
et+1l=1+e Sinceen+n=ne+n=nf(e+1)and n+en=n+ne=n(l+e), we get
en+n=n+ en.

Theorem 12 Let e and f be idempotent elements of N, < Abian’s order. Then

(i) ef =inf{e,f}, (i7) e+ f — fe=sup{e, f}.
Proof (i) AsO=e(f~f)=e(f>~f)=(ef)f ~1)=(fe)le(f — 1)) = (fe)(ef —¢) =

(fe)(fe — ¢), so (fe)® = (fe)e, ie., fe < e. Similarly we can show that fe < f. From
these facts, we have that fe is a lower bound of {e, f}.

Suppose z is any lower bound of {e¢, f}, then 2 < eand z < f,ie,

0 = z(f-f)=2(f/- )=~ [)=[=(1~))
= flz(1-f))=flz—=zf)= f(z - z¢)
= fz(l—e)=zf(l—e€)=z(f — fe) = zf — z(fe) = z® — z(fe),
therefore £ = z(fe), ie., z < fe.

From above facts, we have fe = inf{e, f}.

(ii) Since e(e — (e+ f — fe)) = ele-+fe—f—e) =e+e(fe)—ef —e=e+ fe— fe—e=0
by Lemma 10. Hence e? = e(e + f — fe), ie., e < e+ f — fe.

Similarly, £(f — (e f - fe)) = f(f+fe—f—e) = f+ fe— [~ fe= fe+ [~ f~fe=0
by Lemma 10 and Lemma 11. Hence f?> = f(e+ f — fe),i.e., f < e+ f— fe. Soe+ f — fe
is a upper bound of {e, f}.

Let y be any upper bound of {e,f}. Then e < y and f < y, i.e.,, e = €% = ey and
f=f*= fy. From f(f —1) = O implies 0 = f(e(f — 1)) = f(ef —€) = f(fe—¢) =
fe(fe) —€) = fle(fe - 1)) = (fe)(fe — 1) = (fe) — fe, s0 (fe)* = fe.

Since e(f — fe) =0 and (fe)(f — fe) = 0, by Lerama 6 we have

(e+f—Jfe)(fe) = (e+(f—fe))fe)=e(fe)+ (f - fe)(fe) = fe+ [(fe) = (fe)
= fe+ fe— fe= fe.

=ze=12zf,s0

So we get
(1) (e+ f— fe)(fe) = fe.
We also have )
(et f—fely=ey+ fy—(fely=e+f - (fe)y
and 0= f(e—¢€)= fley—e) = fle(fy—1)) = (fe)(y — 1) = (fe)y — fe, i.e., (fe)y = fe,
therefore we obtain

(2) (e+f—-fe)ly=e+f— fe
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From (1), (2) and Lemma 11 we obtain

(e+f—fe)((e+f—fe)—v)
= (e+f—fe)et (et f—fe)f —(e+ f—fe)(fe) —(e+ [~ fe)y
= elet+f—fe)+ fle+tf—fe)—fe—(e+f— fe)
= et fe-fet+(fetf)—fe—fetfe—f—e
= e+ (fe+f)—fe-f—-e=et+f+fe—fe—f—e=0.

Hence e+ f — fe < y, 50 e+ f — fe is the suprema of {e, f}, namely, sup{e, f} = e+ f — fe.

The partial order relation < in N induces a partial order relation which we also denote
by < in A, the set of all idempotent elements of N. From Theorem 12 we obtain casily
the main results of this paper.

Theorem 13 (A, <) is a lattice with O and 1.

Theorem 14 We define A,V and' on A as follows. Let e,f € A. DefineeA f =
ef,eVf=e+ f—feande =1—e. Then (A,A,V,',0,1) is a Boolean algebra.

Theorem 15 (A,-) forms a semigroup.
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