Zero-Product-Associative Reduced Near-Rings*

Wang Xuekuan

(Dept. of Math., Hubei University, Wuhan)

Abian [1] introduced an order relation \leq (Abian's order relation) in a reduced ring R by defining $x \leq y, x, y \in R$, if and only if $x^2 = xy$. In [2,3], the relation \leq is introduced in a (not necessarily associative) zero-product-associative (ZPA) reduced ring R and it is shown that \leq is a partial order relation in R. We will study Abian's order of the ZPA reduced near-rings. Let N be a ZPA, ZPD reduced near-ring with identity 1.A is the set of all idempotents of N. We show that (A, \leq) is a lattice and $(A, \wedge, \vee, ', 0, 1)$ forms a Boolean algebra by defining $e \wedge f = ef, e \vee f = e + f - ef$ and e' = 1 - e. All results in this paper generalize the parallel results in [1-4].

An algebra system $N = (N, +, \cdot, 0)$ is called a (zero-symmetric) near-ring if (i) (N, +, 0) is a (not necessarily Abelian) group, (ii) (N, \cdot) is a semigroup, (iii) x(y+z) = xy + xz, for all $x, y \in N$, and (iv) 0x = 0, for all $x \in N$. A (not necessarily associative) zero-symmetric near-ring N is said to be zero-product-associative (ZPA) if a product of elements of N which is equal to zero remains equal to zero no matter how its factors are associative. A ZPA near-ring N without nonzero nilpotent elements is called a ZPA reduced near-ring. Other terminologies can be found in [5].

We check easily that the following results in [2] is true for ZPA near-ring by similar arguments.

Lemma 1 A ZPA near-ring N is reduced if and only if $x^2 = 0$ implies x = 0, for all $x \in N$.

Lemma 2 In a ZPA reduced near-ring N, xy = 0 implies yx = 0, for all $x, y \in N$.

Lemma 3 A ZPA reduced near-ring N has insertion-of- factors property, that is, $xy = 0, x, y \in N$, implies xny = 0, for any $n \in N$.

Lemma 4 In a ZPA reduced near-ring $N, x_1 \cdots x_m = 0$ (elements x's not necessarily distinct) if and only if $y_1 \cdots y_n = 0$, where $y_1 \cdots y_n$ is a product (in any order whatsoever) of all the distinct factors appearing in $x_1 \cdots x_m$.

Now we introduce the notion of zero-product-distributive. A ZPA near-ring N is said to be zero-product-distributive (ZPD) if and only if $xy = 0, x, y \in N$, implies (x + y)n = xn + yn, for all $n \in N$. Many algebra systems are ZPA ZPD near-rings. For example, ZPA rings, integral near-ring, and a reduced near-rings is ZPD since we have the following

^{*}Received Nov.10, 1990.

proposition.

Proposition 5 Every reduced near-ring N is ZPD.

Proof Let $x, y \in N$ such that xy = 0, then we have yx = 0. Hence we have x((x + y)d - yd - xd) = 0 and y((x + y)d - yd - xd) = 0, so ((x + y)d - yd - xd)x = 0 and ((x+y)d-yd-xd)y = 0. Hence ((x+y)d-yd-xd)(x+y) = 0, so $((x+y)d-yd-xd)^2 = 0$. Since N is reduced, we have (x+y)d-td-xd = 0, (x+y)d=xd+yd.

Lemma 6 If $x(y-x)=0, x, y \in N$, where N is ZPD, then (y-x)n=yn-xn, for all $n \in N$.

Proof x(y-x) = 0 implies (y-x)x = 0 by Lemma 2. N is ZPD, so yn = ((y-x)+x)n = (y-x)n + xn, hence (y-x)n = yn - xn.

We introduce Abian's order relation \leq on a ZPA ZPD near ring by defining $x \leq y$ if and only if $x^2 = xy$. Since we have Lemma 6, the proof of the following theorem is the translation of the proof of the similar theorems in [2,3] and so will be omitted.

Theorem 7 Let N be ZPA ZPD near-ring. Then Abian's order relation \leq is a partial order on N if and only if N is reduced. In this case, (N, \cdot, \leq) is a partially ordered groupoid, namely if $x \leq y$ and $a \leq b$, then $xa \leq yb$.

Theorem 8 If X is a subset of N such that $\sup X$ exists, then for $r \in N$, $\sup rX$ and $\sup Xr$ exist, and (i) $\sup rX = r \sup X$, (ii) $\sup Xr = (\sup X)r$.

From now on, let N be a ZPA ZPD reduced near-ring with identity 1 and \leq Abian's partial order.

Lemma 9 Let S be a subset of idempotent elements of N, if $\sup S(\inf S)$ exists, then it must be idempotent.

Proof Denote sup S=x. Then $s \le x$, for all $s \in S$, so $s=s^2=sx$ or s(x-1)=0. Note that N is ZPA, from Lemma 3, we have $0=s(x(x-1))=s(x^2-x)$ or $sx^2=sx=s^2$, so $s \le x^2$, for all $s \in S$, i.e., x^2 is an upper bound of S. Hence $x \le x^2$, i.e., $x^2=xx^2$ or $x(x-x^2)=0$. By Lemma 2 we have $(x-x^2)x=0$, so $(x-x^2)x^2=0$, and so $(x-x^2)(-x^2)=0$. From these facts, we have $(x-x^2)^2=0$, so $x-x^2=0$, i.e., $x=x^2$ since N is reduced. Hence $x=\sup S$ is idempotent.

Denote inf S = y, then $y \le s$, for all $s \in S$, i.e., $y^2 = ys$ or y(y - s) = 0. From Lemma 3, we have

$$0 = y(s(y-s)) = y(sy-s^2) = y(sy-s) = (ys)(y-1) = y^2(y-1) = y(y(y-1)) = y(y^2-y),$$

so $(y^2 - y)y = 0$, and so $(y^2 - y)y^2 = 0$ by Lemma 4. Consequently $(y^2 - y)^2 = 0$, so $y^2 - y = 0$, $y^2 = y$, i.e., inf S = y is idempotent.

Lemma 10 Let e be an idempotent element of N. Then $(i) c(n_0) = n_0 \text{ for each } n \in \mathbb{N}$ (ii) c(ii) c ic in the center of N.

(i) e(ne) = ne, for each $n \in N$, (ii) e is in the center of N.

Proof (i) From 0 = e(1 - e) we have (1 - e)e = 0 and 0 = (1 - e)(ne) for each $n \in N$. Thus ne = (1 - e + e)(ne) = (1 - e)(ne) + e(ne) = e(ne).

(ii) Since e(1-e)=0, 0=e(n(1-e))=e(n-ne)=en-e(ne), we have en=e(ne). From this and (i) we get ne=en, for each $n \in N$.

Lemma 11 Let e be an idempotent element of N. Then en + n = n + en and ne + n = n + ne, for each $n \in N$.

Proof It is enough to show en + n = n + en. From e(e + 1 - e - 1) = 0, we get (e + 1 - e - 1)e = 0. From this we have $(e + 1 - e - 1)^2 = 0$, so e + 1 - e - 1 = 0, i.e., e + 1 = 1 + e. Since en + n = ne + n = n(e + 1) and n + en = n + ne = n(1 + e), we get en + n = n + en.

Theorem 12 Let e and f be idempotent elements of N, \leq Abian's order. Then (i) $ef = \inf\{e, f\}$, (ii) $e + f - fe = \sup\{e, f\}$.

Proof (i) As $0 = e(f - f) = e(f^2 - f) = (ef)(f - 1) = (fe)(e(f - 1)) = (fe)(ef - e) = (fe)(fe - e)$, so $(fe)^2 = (fe)e$, i.e., $fe \le e$. Similarly we can show that $fe \le f$. From these facts, we have that fe is a lower bound of $\{e, f\}$.

Suppose x is any lower bound of $\{e, f\}$, then $x \le e$ and $x \le f$, i.e., $x^2 = xe = xf$, so

$$0 = x(f-f) = x(f-f^2) = (xf)(1-f) = fx(1-f)$$

$$= f(x(1-f)) = f(x-xf) = f(x-xe)$$

$$= fx(1-e) = xf(1-e) = x(f-fe) = xf - x(fe) = x^2 - x(fe),$$

therefore $x^2 = x(fe)$, i.e., $x \le fe$.

From above facts, we have $fe = \inf\{e, f\}$.

(ii) Since e(e - (e + f - f e)) = e(e + f e - f - e) = e + e(f e) - e f - e = e + f e - f e - e = 0by Lemma 10. Hence $e^2 = e(e + f - f e)$, i.e., $e \le e + f - f e$.

Similarly, f(f-(e+f-fe)) = f(f+fe-f-e) = f+fe-f-fe = fe+f-f-fe = 0by Lemma 10 and Lemma 11. Hence $f^2 = f(e+f-fe)$, i.e., $f \le e+f-fe$. So e+f-fe is a upper bound of $\{e,f\}$.

Let y be any upper bound of $\{e, f\}$. Then $e \le y$ and $f \le y$, i.e., $e = e^2 = ey$ and $f = f^2 = fy$. From f(f - 1) = 0 implies $0 = f(e(f - 1)) = f(ef - e) = f(fe - e) = f(e(fe) - e) = f(e(fe - 1)) = (fe)(fe - 1) = (fe)^2 - fe$, so $(fe)^2 = fe$.

Since e(f - fe) = 0 and (fe)(f - fe) = 0, by Lemma 6 we have

$$(e+f-fe)(fe) = (e+(f-fe))(fe) = e(fe)+(f-fe)(fe) = fe+f(fe)-(fe)$$

= $fe+fe-fe=fe$.

So we get

$$(1) (e+f-fe)(fe)=fe.$$

We also have

$$(e + f - fe)y = ey + fy - (fe)y = e + f - (fe)y$$

and 0 = f(e - e) = f(ey - e) = f(e(y - 1)) = (fe)(y - 1) = (fe)y - fe, i.e., (fe)y = fe, therefore we obtain

(2)
$$(e+f-fe)y = e+f-fe$$
.

From (1), (2) and Lemma 11 we obtain

$$(e+f-fe)((e+f-fe)-y)$$
= $(e+f-fe)e+(e+f-fe)f-(e+f-fe)(fe)-(e+f-fe)y$
= $e(e+f-fe)+f(e+f-fe)-fe-(e+f-fe)$
= $e+fe-fe+(fe+f)-fe-fe+fe-f-e$
= $e+(fe+f)-fe-f-e=e+f+fe-fe-f-e=0$.

Hence $e+f-fe \le y$, so e+f-fe is the suprema of $\{e,f\}$, namely, $\sup\{e,f\}=e+f-fe$. The partial order relation \le in N induces a partial order relation which we also denote by \le in A, the set of all idempotent elements of N. From Theorem 12 we obtain easily the main results of this paper.

Theorem 13 (A, \leq) is a lattice with 0 and 1.

Theorem 14 We define \land, \lor and ' on A as follows. Let $e, f \in A$. Define $e \land f = ef, e \lor f = e + f - fe$ and e' = 1 - e. Then $(A, \land, \lor, ', 0, 1)$ is a Boolean algebra.

Theorem 15 (A, \cdot) forms a semigroup.

References

- [1] A. Abian, Direct product decomposition of commutative semisimple rings, Proc. Amer. Math. Soc., 24(1970), 502-507.
- [2] A. Abian, Order in a special class of rings and a structure theorem, Proc. Amer. Math. Soc., 52(1975), 45-49.
- [3] A. Abian, Addendum to "Order in a special class of rings and a structure theorem", Proc. Amer. Math. Soc., 61(1976), 188.
- [4] D. Ramakotaiah and V. Sambasivarao, Reduced near-ring, in "Near-Ring and Near-Fields", G. Betsch eds., North-Holland, Amsterdam, 1987.
- [5] G. Pilz, Near-Rings, North-Holland, Amsterdam, 1983.

零积结合约化近环

王学宽

(湖北大学,武汉 430074)

摘 要

本文引入零积可分配近环的概念,研究零结合零积可分配约化近环 N 中的 Abian 序 \leq ,我们的主要结果是证明了,如果 N 具有恒等元 1,则 N 的全体幂等元之集 Λ 对于 Abian 序 \leq 成为一个格;在 Λ 中定义 e Λ f=ef, e \forall f=e+f-fe, e'=1-e, $(\Lambda,\Lambda,\forall,',0,1)$ 作成一个布尔代数;而且虽然 (N,\cdot) 是非结合的, (Λ,\cdot) 却成为一个半群.