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Abstract In the recent papers [1], [2], we showed that the Mobius inversion can be
generalized to the locally infinite, point-representable poset. The point of the present
paper is to exploit *—finite structures in the study of combinatorics. It is noted that there
exists some locally *—finite poset C containing all the standard entities in the natural
extension *S of a locally infinite poset S, and then a *—incidence algebra *I(C,*K) of
C, over a field K of characteristic 0, is defined. It follows from this that the Mdbius
inversion can be generalized to general locally *—finite posets.
An application to some linearly ordered set is given anew of such result.

80. Introduction

The study of the first author on the generalized Mobius inversion was begun in the
articles [1], [2].

Most standard discrete structures are often endowed with some natural order struc-
tures. Thus G.-C. Rota [3] expanded the idea of L. Weisner and P. Hall, which the Mdbius.
function and Mobius inversion were defined for functions over locally finite poset Sy. Their
works are as follows. Let f,g € Map(Sy, K), the functions from Sy into a field K of char-
acteristic O (usually the standard real numbers). Suppose that the locally finite poset Sy
contains a greatest lower bound, 0—element, denoted by O (or all principal ideals of Sy are
finite). We may define the lower sum operator S< cn Map{Sy, K) by

(S<N(=) =3 f(v) -1

y<z

and the lower difference operator D<, inverse to S<, by

(D<9)(z) = ) 9(y)uly, z) 0-2)

y<z
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analogously to the indefinite integral in calculus, where p is the Mobius function. Then

g(z) = (S<f)(z) & f(z) = (D<g)(=),z € 5. (0-3)

In virtue of the assumption that the poset S is locally finite, the Dirichlet products of
(0-1) and (0-2) are well-defined.

Is it possible to generalize (0-3) to locally infinite poset S, of which every segment
is standard infinite? This is indeed so if S is point-representable poset as in [1], [2]. In
the present paper, we study general locally infinite poset, for example, the power set
P(M) of an infinite set M, which is partially ordered by set inclusion C but locally
infinite poset with O—element, empty set . We will show that if S C B C M, for any
f,9 €* Map(P (M), K), Mébius inversion

9(B) = D_ f(S) & f(B)= 3_ u(S,B)g(S) (0-4)

SCB SCB

holds in some corresponding form of nonstandard combinatorics (see Corollary 3.2).

Another example is as follows. Let II(A) be the lattice of partition of an infinite set
A, which is the set of partitions of A, ordered by refinement <. The O—element of [[(A)
is the partition whose blocks are the one element subsets of A. We will show also that for
any partition and any f,g €* M([](A), K) the Mobius inversion

9(X)= Y f(A) & f(X) = D n(4 X)g(4) (0-35)

A<Xx A<X

holds in the sense of *—finiteness (cf. Corollary 3.2). These examples demonstrate that
any (locally) infinite set with some additional order structure should be considered.

Section 1 contains the most elementary facts of nonstandard analysis about the present
paper. Here, in view of above observations, we introduce particularly the superstructure,
and an enlargement of a superstructure and the exhaustiveness as well. We construct
a *—incidence algebra in Section 2, and generalize Mobius inversion to *—finite sets in
Section 3, obtaining star-form Mdbius inversion. Section 4 illustrates with the fundamental
theorem of integral calculus that *—finite combinaorial techniques are particularly useful
in realizing a synthesis of continuous and discrete structures.

§1. Superstructure and exhaustiveness

Let X be any nonempty set. We will work in the superstructure V(X U N) defined as
follows. The n'* cumulative power set of X U N is defined recursively by

Vo(XUN)=XUN,
Var (X UN) =V (X UN)U PV, (XUN)].

The superstructure over X U N is the set

V(XUN)=UZ V. (XUN).
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Notice that the field K of characteristic 0 and all infinite entities with the additional par-
tically order structure, e.g., the lattice of partitions [[(S) of a set S, are in the framework
of superstructure. Throughout this paper, S = (S, <) denotes a locally infinite poset.

Definition 1.1([4]) A family € of subsets of an entity S € V(X UN) 15 called exhausting
if, for each finite subset F C S, there is an E € £ such that F C E.

Lemma 1.2 Let £ be the family of all locally finite subsets of S € V(X U N). Then £

is an ezhausting famaly.

Proof Assertion is trivial since each finite subset F of S is locally finite. O

We suppose now that an index set I and some free ultrafilter on I are chosen so that the
superstructure V' [*(XUN)] (with respect to a monomorphism * : V(XUN) — V[*(XUN)]
is an enlargement of V(X U N).

We will need the following well known result of nonstandard analysis.

Proposition 1.3([4]) If € is an ezhausting family of subsets of S € V(X U N) and
V[*(X UN)] is an enlargement, then there exists a set C € *¢ containing all the standard
entities in *S.

Corollary 1.4 Let £ be as in Lemma 1.2. Then there exists a locally *— finite partially
ordered subset C €* €, which contains °S = {*a:a € S}.

§2. x—Incidence algebra

Lemma 2.1 Every mazimal chain in a segment [z,y] of S is refinable in 'S, that 1s,
there ezist nonstandard entities in *(z,y|, which are comparable with the standard entities

inS.

Proof Let (zg,%1, ++,zn) be the maximal chain in a segment [z,y] of S, that is, 2o =
€,z =y, and z; + 1 covers z; for all 1. Since the superstructure V (*{ X U N]) (with respect
to monomorphism * : V(X U N) — V[*(X U N)]) is an enlargement of V(X U N) and
[z,y] is infinite, *[z, y] is also infinite and contains entities which are not standard.

Let P(z',y') be the relation on [z;,2;],0 < { < 7 < n, which holds whenever z' <
y,2',y' € [z;,2;]. Then relation P is concurrent on domP, since for each finite set
{z11, -, %1t} in domP, we may choose y = max{z13,*-+,Z1x} so that (z;;,y) € P,1 <1 <
k. Thus it is obtained by V [*(XUN)] being an enlargement that for the concurrent relation
P € V(XUN), there is an element b € rng* P so that (£,b) €'P for all z € domP = [z;, z;].
For the dual relation P*, the argument is similar.

The lemma is established immediately from these. 0O

Because of Corollary 1.4 and Lemma 2.1, we can define the *—incidence algebra
*I(C,* K) of the locally *—finite partially ordered subset C of *S € V[*(X U N}, over a
field *K that is the natural extension of a field K of characteristic O, where C is as in
§1. The members of *I(C,* K) are *K valued functions * f(z,y) of two variables, with =
and y ranging over C and with sole restriction that *f(z,y) = 0 unless z < y, where *f is
the natural extension of f € V(X U N). The sum of two such functions, as well as multi-
plication by standard or nonstandard scalars, are defined as usual, and the star-Dirichlet
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product *f +*g =*h is defined as follows

*

*hz,y) =" Y f(z,2)"9(z,y). 2-1)

2€[z,y]

Notice that the right-hand side is well defined which is a *—finite sum by Corollary (1.4).
Obviously, 'f ' g €' I(C, K), where we set ('f ' g)(z,y) =0if z £ y.

Definition 2.2 The family 'I(C, K) together with the operations addition, standard or
nonstandard scalar multiplication and Star-Dirichlet product (star-convolution) is called
the x—incidence algebra of a locally *— finite poset C, over a field 'K .

The incidence functions *§,%,*,*s and so on of T(C,*K) are the natural extensions of
the corresponding functions of ISy, K) respectively, e.g., we set

. )1, af z=y,
(a) Kronecker function 8(z,y) := 0, otherwise.
1, if z<y,

(b) Zeta-function *(z,y) := {

0, otherwise.

(¢) Chain-function A(z,y) :=*¢ —*6.

(d) Mobius function h :=*¢"1,

1t is easily verified by the transfer principle that the locally *—finite posets possess the
formal combinatorial properties of the locally finite posets. For example, the following are
obvious.

Proposition 2.4 An element 'f €*I(C,’K) 15 a unit if and only if f(z,z) # O for.all
r € C. A unit *f possesses a unique two-sided inverse * f~1 which is defined by Principle
of Transfinite Induction.

§3. Star-form Mdébius inversion

Theorem 3.1(star-form Mobius inversion) Let C be a locally *— finite poset with a
O—element 0. Then for'f!g €*Map(C,*K)

9(=) =" > fW(zeC) e f(z) =" 3 Y(¥)uly,2),(z€C) 3-1

0<y<z 0<y<z

holds, where *pu(y,z) is the Mobius function of 'I(C, K).

Proof The conclusion is clear by transfer. In fact, let £ be as in (1.2}, then for each

E € &, the following sentence formulated in terms of semi-formal notations is true in
V(XUN):

(VE) [E € €] = (Vf)(¥Y9) (/9 € Map(E, K)] = (35<)(3D<)[S< € S(M, R)
ADg € D(M, R)] A (Vz)[z € B] = [¢(z) = (S</)(z) & f(2) = (D<g)(2)] (3-2)

where S(M, R) and D(M, R) denote the families of lower sum operators and lower differ-
ence operators respectively. By transfer, the *—transform of (3-2)
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(VE)(E €*€] = (Vf)(V9)[f,9 €'Map(E,’K) = (35<)(3D<)
[S< €*'S('M,"R) A D< €*'D('M,'R) A (V2)(z € E] (3-3)
= g(z) = (S<f)(z) & f(z) = (D<g)(z)

is true in V[{X U N)], that is

9(2) = (5<¥)(=z) " f(z) = ("D< B)(2) (3-4)

is true for all z € E €* £ (E being locally *—finite poset).

It was noted in Corollary 1.4 that for locally infinite poset S, there is a locally *x—finite,
partially ordered subset C €*¢ containing all the standard entities in 'S. We now restrict
z to S, then (3-3) holds. Thus we obtain the following generalized Mobius inversion.

Corollary 3.2 Let S be a llocally infinite poset with a 0—element 0. Then for ¥f,’g €
M(C,"K)
9(z) = (5<¥)(z) &' f(z) = (D<y)(2), (z € S). (3-5)

Proof It suffices to notice the fact that any segment *[0, z], where 0 and z are in S, has
a O—element.

Theorem 3.3 Let S be as above. Suppose Ly €*I(C,*K) possesses a inverse g ="pil.
Then
9(z) =" F(W)ly, 2) & f(z) =" "9(u) p2(y, z), (z € S). (3-86)

y<z y<z
Proof For f,’g €*I(C,’K), we have
9="f+"u ©"f ="g *"u,.
Now we define

7(0,2) ="1(),5(0,5) ='2).

The conclusion is immediate.

§4 Examples

It is clear that (0—4) and (0-5) are true for locally infinite poset in the sense of Corollary
(3.2). As other interesting application of Theorem 3.3, we give anew another combinatorial
proof of the fundamental theorem of the infinitesimal calculus.

Definition 4.1 By the p—cardinality of a partition A € [[(S), the lattice of partitions of
S, denoted by || A ||, we mean the number of blocks of the partition A. Each of blocks of the
partition A 1s said to have p—cardinality 1. The union U of some blocks of partititons A
is said to have p—counting measure ip(U) defined by g,(U) =|| U || / || A ||, where || U ||
means the number of blocks contained in U. ji,(U) in general is a hyperreal number in R.
We define a real-valued p— copunting measure by pp,(U) = st(@,(U)) = st(|| U || / ]| A l]).
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Let K be real field R, and let f be continuous on [0,a] C R. Take z € [0,a]. [0,z] =
is a linearly ordered set which is ordered by usual ordering <. Make a fine partition A €
[1([0, z]), which is a set of subintervals (z;_1,z;) (f = 1,2,-++,v,v €N\ N,z =0,z, = z)
of [0, z] such that the endpoints contain all standard points of [0, z|, and

Ty — Ty .
-1 XLy, ——— = - )2)'“, .
T~z 7 1(i=1 v)
It is a fact that (zo,z1,%2, -, %y) is just C in Theorem 3.3 and we have
pp([2i-1, 2i)) = st(Bp([zi-1,2:))) = st(l| zir,ze) || / ] A []) = st(1/2) = 0.
Suppose *puy = fp([zi—1,2:))*¢," p2 = [1/Bp(zi—1,7:)]71*¢ ™. Then we obatin by Theorem

3.3 that for z € [0, a],

9(z) = 9(=)=st(y (z))—st(— >, fW)%(y.2)

yECﬂ{O,z]

e )

Y yecn+(o,z]

Since (z;—y1,2;)/(1/v) ~ 1,1 = 1,%,v and f is uniformly continuous on [0, z], it follows from
the quasi-Duhamel Pr1nc1ple [11] that g

9(@) =" gl =st(; 3 Y(w) —st(z S —zia)) = [0 de
yeECN*[0,2] 0

and g(z) is continuous.
It is known that for all a,b € C,

*u(a,a) =1/%¢(a,a) =1,
*ﬂ(a:b) =- Z *l‘(a>z) == Z */"'(z’b)'

alz<b ’ a<z<b

By Theorem 3.3, we have

f@) = “f@) =siCI@) =) T ely)uly, =)
yeCn*[0,z] .
= stl(;) lzgz. (20,2)] = (5) ™ (8(0) "9(z0-1)]
= stf()” ((xu)—*g(zu—%))sz{-g(z).
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