A Generalization of Algebraic Lattices*

Yang Anzhou
(Dept. of Appl. Math., Beijing Polytechnic Univ., Beijing, China)

In this paper, we prove two theorems on lattices and operators.

Definition 1 Let L be a complete lattice. An element a in L is (*)-compact if and only if whenever $a \leq VA$ for $A \subseteq L$ then $a \leq VB$ for some $B \subseteq A$ with B is at most countable. L is called (*)-algebraic lattice if every element in L is a supremum of (*)-compact elements.

(*)-algebraic lattice is a generalization of algebraic lattice.

Definition 2 If we are given a set A, a mapping $\phi: P(A) \to P(A)$, where $P(A) = \{S : S \subseteq A\}$ = power set of A, is called a closure operator on A if, for $X, Y \subseteq A$, it satisfies: (1). $X \subseteq \phi(X)$, (2). $\phi(\phi(X)) = \phi(X)$, (3) $X \subseteq Y$ implies $\phi(X) \subseteq \phi(Y)$. A subset X of A is called a closed subset if $\phi(X) = X$. The poset of closed subsets of A with set inclusion as the partial ordering is denoted by $L(\phi)$. A closure operator ϕ on the set A is a (*)-operator if for every $X \subseteq A$

$$\phi(X) = \bigcup \{\phi(Y) : Y \subseteq X \text{ and } Y \text{ is at most countable}\}. \tag{1}$$

Theorem 1 If ϕ is a (*)-operator on a set A, then $L(\phi)$ is a (*)-algebraic lattice.

Proof First we will show that $\phi(X)$ is (*) - compact element if X is at most countable. So suppose $X = \{a_1, a_2, \cdots, a_j, \cdots, \}$ and $\phi(X) \subseteq V_{i \in I} \phi(A_i) = \phi(\cup_{i \in I} A_i) = \cup \{\phi(Y) : Y \subseteq \cup_{i \in I} A_i \text{ and } Y \text{ is at most countable}\}$. For each $a_j \in X, X \subseteq \phi(X)$, we have $Y_j \subseteq \cup_{i \in I} A_i$ with $a_j \in \phi(Y_j), Y_j$ is at most countable, since Y_j is at most countable, then there are at most countable many $A_i's$, say $A_{j1}, A_{j2}, \cdots, A_{jn}, \cdots, (A_{jn} \in \{A_i : i \in I\} \text{ such that } Y_j \subseteq \cup_{n=1}^{\infty} A_{jn}, a_j \in \phi(\cup_{n=1}^{\infty} A_{jn}), X \subseteq \cup_{j=1}^{\infty} \phi(\cup_{n=1}^{\infty} A_{jn}) \subseteq \phi(\cup_{j=1}^{\infty} \cup_{n=1}^{\infty} A_{jn}), \phi(X) \subseteq \phi(\cup_{j,n=1}^{\infty} A_{jn}) = V_{j,n=1}^{\infty} \phi(A_{jn}), A_{jn} \in \{A_i, i \in I\}.$ So $\phi(X)$ is (*)-compact. Now suppose $\phi(X)$ is not equal to $\phi(Y)$ for any at most countable Y. From $\phi(X) = \cup \{\phi(Y) : Y \subseteq X \text{ and } Y \text{ is at most countable}\}$, it is easy to see that $\phi(X)$ cannot be contained in any at most countable union of the $\phi(Y)'s$ (by reduction to absurdity), hence $\phi(X)$ is not (*)-compact. For each $\phi(X) \in L(\phi), \phi(X) = \cup \{\phi(Y) : Y \subseteq X \text{ and } Y \text{ is at most countable}\}$,

^{*}Received Aug. 31, 1989.

 $\phi(X) = \phi(\cup \{Y : Y \subseteq X \text{ and } |Y| \le \aleph_0\}) = \vee \{\phi(Y) : Y \subseteq X \text{ and } |Y| \le \aleph_0\}, \phi(Y)'s \text{ are } (*) - \text{compact, } \phi(Y)'s \text{ are } (*) - \text{compact, so } L(\phi) \text{ is } (*) - \text{ algebraic lattice.} \quad \Box$

Theorem 1' Every (*)-algebraic lattice is isomorphic to the lattice of closed subsets of some set A with a (*)-operator.

proof Let L be a (*)-algebraic lattice, and A be the subset of (*)- compact elements. For $X \subseteq A$ define $\phi(X) = \{a \in A : a \leq \vee X\}.\phi$ is a (*)- operator. The map $a \longmapsto \{b \in A : b \leq a\}$ gives the isomorphism. \square

Theorem 2 Let (L, \leq) be a complete lattice, $S \subseteq L, S$ is a complete lattice under \leq if and only if there is an idempotent isotone self-mapping ψ of $L(i.e.\psi : L \longrightarrow L)$, for $x, y \in L, x \leq y$ implies $\psi(x) \leq \psi(y); \psi(\psi(x)) = \psi(x)$ such that $L(\psi) = range(\psi) = S(i.e., Fix(\psi)) = \{x \in L : \psi(x) = x\} = Image(\psi) = \{\psi(x) : x \in L\} = S$. The proof of theorem 2 is very difficult.

Theorem 2' Let (L, \leq) be a complete lattice, $S \subseteq L, S$ is a (*)-algebraic lattice under \leq if and only if there are: (1) $\psi: L \longrightarrow S, \psi$ is an idempotent isotone mapping such that $L(\psi) = \operatorname{range}(\psi) = S$; and (2) a (*)-operator ϕ for some $A \subseteq S$ such that $(L(\phi), \subseteq)$ is isomorphic (S, \leq) .

Proof By Theorem 2, Theorem 1 and Theorem 1'.

Note (a). In condition (1), "at mast countable" change over to arbitrary Aleph, then theorem 1 and 1' hold also.

- (b). Condition (1) is different from that in Grätger's book.
- (c). Theorem 2 is an interesting new theorem on complete lattice, but its proof is very difficult.

References

- [1] S.Burris and H.P.Sankepanavar, Universal Algebra, 1981.
- [2] G.Grätger, Universal Algebra, 2nd ed. 1979.
- [3] R.Engelking, General Topology, 1977.