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In this paper, we prove two theorems on lattices and operators.

Definition 1 Let L be a complete lattice. An element a in L is (¥)—compact if and only
if whenever a < VAfor A C L then a <V B for some B C A with B is at most countable.
L is called (*)—algebraic lattice if every element in L is a supremum of (*)—compact
elements.

(*)—algebraic lattice is a generalization of algebraic lattice.

Definition 2 If we are given a set A, a mapping ¢ : P(A) — P(A), where P(A) = {S:
S C A} = power set of A, is called a closure operator on A if, for X,Y C A, it satisfies:
(1). X C ¢(X), (2). #(¢(X)) = ¢(X), (3) X C Y implies ¢(X) C ¢(Y). A subset X
of A is called a closed subset if ¢(X) = X. The poset of closed subsets of A with set
inclusion as the partial ordering is denoted by L(¢). A closure operator ¢ on the set A is
a (*)—operator if for every X C A

#(X)=U{¢(Y):Y C X and Y is at most countable}. (1)

Theorem 1 If ¢ is a (*)—operator on a set A, then L(¢) is a (*)—algebraic lattice.

Proof First we will show that ¢(X) is (¥*)— compact element if X is at most countable.
So suppose X = {ay,az,---,a;, -+, } and #(X) C Vierd(Ai) = ¢(Uicr A;) = U{p(Y) : Y C
UicrAi and Y is at most countable}. For each aj € X, X C ¢(X), we have Y; C Ujecr A;
with a; € ¢(Y;),Y; is at most countable‘, since Y; is at most countable, then there are
at most countable many Als, say Aji, Ajs, -+, Ajn, -+, (Ajn € {A; : ¢ € I} such that
Y; © Uili4jn, a5 € ¢(Upl14jn), X C U2 6(URL  Ajn) C B(UF2, URZ, Ajn), ¢(X) C
(U2 =145n) = V5-16(Ajn), Ajn € {A;,¢ € I}. So ¢(X) is (*)—compact. Now suppose
#(X) is not equal to ¢(Y) for any at most countable Y. From ¢(X) = U{¢(Y) :Y C
X and Y is at most countable},it is easy to see that ¢(X) cannot be contained in any
at most countable union of the #(Y)'s (by reduction to absurdity), hence ¢(X) is not
(*)—compact.For each ¢(X) € L(¢), d(X) = U{#(Y) : Y C XandY is at most countable},
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#(X) = p(U{Y : Y C Xand|Y| < Ro}) = V{¢(Y) : Y C Xand|Y| < Ro}, d(Y)'s are (x)—
compact, #(Y)'s are (*)—compact, so L(¢) is (+)— algebraic lattice. [

Theorem 1’ Every (*)—algebraic lattice is 1somorphic to the lattice of closed subsets of

some set A with a (*)—operator.

proof Let L be a (x)—algebraic lattice, and A be the subset of (*)— compact elements.
For X C A define ¢(X) = {a€ A:a < VX}.¢is a (x)— operator. The map a — {b €
A : b < a} gives the isomorphism. O

Theorem 2 Let (L,<) be a complete lattice, S C L,S is a complete lattice under
<if and only if there is an tdempotent isotone self-mapping o of L(i.ep : L — L, for
z,y € L,z < y implies Y(z) < ¢(y);v(¥(z)) = ¥(z)) such that L(yp) = range(yp) =
S(i.e., Fiz(¢) = {z € L : Y(z) = z} = Image(y)) = {¢(z) : z € L} = S).

The proof of theorem 2 is very difficult.

Theorem 2° Let (L,<)be a complete lattice, S C L,S s a (x)—algebraic lattice under
< if and only if there are: (1) ¢ : L — S, 4 is an idempotent isotone mappmg such that
L(y) = range(y) = S; and (2) a (*)— operator ¢ for some A C S such that (L($),C) s
isomorphic (S, <).

Proof By Theorem 2, Theorem 1 and Theorem 1°.

Note (a). In condition (1), “at mast countable” change over to arbitrary Aleph, then
theorem 1 and 1’ hold also.

(b). Condition (1) is different from that in Gratger’s book.

(c). Theorem 2 is an interesting new theorem on complete lattice, but its proof is
very difficult.
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