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Abstract. A topoogy R(r) is constructed from a given topology 7 on a set X. R(r) is
coarser than r, and the following are some results based on this topology:

Continuity and RS-continuity are equivalent if the codomain is retopologized by R(r).
Each topological space has a coarser extremely disconnected topology. »
The class of semi-open sets with respect to R(r) is a topology.

T> and semi-T; properties are equivalent on a space whose topology is R(7).
Minimal Ry—spaces are RS-compact.
Maximal a—~compact spaces are RS-compact.

SN

1. Ihtroduction

Throughout the present paper (X,o) and (Y,7) are topological spaces on which no
separation axioms are assumed unless explicitly stated. A set S is said to be regular open
(resp. regular closed) if S = int(cl(S)) (resp.S = cl{ int(S)). A set S is said to be a-open
[17),if S C int(c] int(S)). A set S is said to be regular semi-open [4] (resp. semi-open (12])
if there exists a regular open (resp. open) set O such that O C S C cl - (0). Tt should
be noticed that the complement of a regular semi-open set is also regular semi-open.- The
family of all regular semi-opdn (resp. regular open, regular closed, a-open and semi-open)
sets in X is denoted by RSO(X) (resp. RO(X), RC(X),aO(z), SO(X)). A space X is
said to be extremely disconnected if for every open set O of X, cl (O) is open in X.

In 1980, Hong (8] has introduced a new class of topological spaces called RS- compact
spaces which are characterized by the following property “Every regular closed cover has
a finite subfamily, the interiors of whose members cover X”.

Note The definition of RS-compact space in the sense of Hong is equivalent to that of
an I-compact space in the sense of Cameron [5]. In 1985 Noiri. {18] has introduced RS-
compact relative to X.“A subset S of X is RS-compact relative to X if for every cover
{V; : 1 € I} of S by regular closed sets of X, there exists a finite subset Iy of I such that
S c u{int(V;) : i € Ih}.

In 1989, Abd El-Mondef et al., [2] have introduced RS-continuous function“A function
f: X —Y is called RS-continuous if for each z € X and each open set V C Y containing
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f(z) having RS-compact complement, there exists an open set U C X containing z such
that f(U) C V.“A space X is said to be almost normal space [14] if for every two disjoint
regular closed subsets F; and F, of X, there exist two disjoint open sets U and V in X
such that F; ¢ U and F, C V. A space X is semi-T, [13] (resp. semi-T3 (1]) if for each
z,y € X,z # y, there exist U and V €SO(X) such that z € U,y € V, and UNV = @ (resp.
c(U)Ncl(V) = 8). The space (Y,7) is Ro [6] if for each G € 7,z € G implies cl{z} C G.
We observe that in every Ry topological space the closure of a singleton set is compact.
A space X is a-compact [3] if each cover of X by a-open sets in X has a finite subcover.

Theorem 1.1'8  If A € RSO(X) and B is RS-compact relative to X, then AU B is
RS-compact relative to X.

Theorem 1.2/'8] Let A € RO(X). Then A is RS-compact relative to X.
Theorem 1.3'8) If X is RS-compact and A € RO(X), then A is RS-compact.

Theorem 1.418) Let X be an open set of X. Then we have:
(1) If A C Xo, then Intx(A) =Intx, (A).
(2) If V€ RSO(X), then V N Xy € RSO(Xy).

Theorem 1.505] Any RS-compact is eztremely disconnected.
Theoren. 1.6/% Every compact Hausdorff space is normal.

Theorem 1.7 A space (X,r) is semi-T} iff for each z,y € X,z # vy, there exist
Wy, Wy € RC(X, 1) contatning z,y respectively, such that Wy NW, = 0.

Theorem 1.811% The following statements are equivalent for a space (X,1):
(a) (X,7) is extremely disconnected.
(b} For each A€ SO(X,7),cl(A) € 7).
(¢) For each A,B € SO(X,7),cl(An B) = cl(A) N cl(B).

2. Co RS-compact topologies

Let (Y, 7) be a topological space, and consider R'(r) = {U € 7 : Y — U is RS-compact
relative to 7}. R'(r) is a base for a topology R(r) on Y, called the Co RS-compact topology
on Y. We shall denote by (Y, R(r)) to be a Co RS-compact space of (Y,7), and R-cl (S)
(resp. R-int (S)) will denote the closure (resp. interior) with respect to R(r) of a subset
S of (Y, R(r)). From definition we have R(r) C 7, and the following lemma is a direct
consequance.

Lemma 2.1 The function f : (X,0) — (Y,7) is RS-continuous iff f : (X,0) — (Y, R(7))
13 conlinuous.

Theorem 2.1 For any topological space (Y,7),(Y, R(7)) ts RS-compact space.

Proof Consider the R(r) regular closed cover A = {V; : i € I} of Y, and V' be some
nonemptay member of A, there exists R(r) open set U such that U C V C R-cl (U), and
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Y — U is RS-compact relative to r. By using Theorem 1.1 and Theorem 1.2 (Y — V),
is RS-compact subspace of Y. Assume that A = Y -V, thus V; N A €RSO(A), for
each { € I (By using Theorem 14,and A = U{V; N A : ¢ € I}. Thete exists a finite
subset Ip of I such that A = U{int4(V; N A) : « € I}. From Theorem 1.4, we have
int 4 (V; N A) =inty (V; N A) Cinty(V;), for each ¢ € Iy. Hence A C U{inty(V;) : i € Ip},
and A=Y —V is RS-compact relative to R(r). Thus (Y, R(r)) is RS-compact space.

Proposition 2.1 The following are hold:
(a) RO(Y, R(r)) c RO(Y,r).
(b) LG = clgrG, for all G € RO(Y, R(r)).
(¢) RSO(Y,R(r)) c RO(Y,).

Proof (a) Let G €RO(Y, R(r)), then G =intgclr(G) = clgr(G)[(Y, R(r)) is extremely
disconnected]. But cl,G CclgG, implies that G =cl,G and G = int,cl;G.

(b) From (a), the proof is obvious.

(c) By using (b), the result follows.

Proposition 2.2 Let X be an extremely disconnected space then:

(a) The union of a finite regular open sets is a regular open set.

(b) If X is the union of e finite number of reqular open RS-compact subspaces, then
X 1s RS-compact space. '

Lemma 2.2 If (Y, R(r)) is almost normal space, then (Y,7) is RS-compact.

Proof Let Fy and F; be two disjoint R(r) regular closed sets, then there exist disjoint
R(r) open sets U and V such that F; C U and F C V. Hence Y =Y - (UNV) =
Y -U)u(Y - V)= (Y - F;)U(Y — F;). By using Proposition 2.1 and Theorem 2.1 and
Proposition 2.2, we arrive (Y,7) is RS-compact.

Theorem 2.2 (Y,r) is RS-compact iff r = R(r).

Proof Let 7 = R(r), then (Y,7) is RS-compact. Conversely, we assume that (Y,7) is
RS-compact, to prove that r C R(r). Let U € r, then cl,U € 7, and Y — cl,U €RO(Y, 1),
which implies that Y —cl, U is RS-compact relative to 7. Hence cl,U € R(r) and U € R(r).

3. Separation Properties
The property of being T; space is expansive, that is, if (Y,7) is Ty and 7 C 7' then

(Y,7') is Ty but it is not generally contractive. The following result proves the contractivity
of Ty property from (Y, 1) to (Y, R(r)).

Lemma 3.1 If (Y,7) is Ty, then (Y, r(r)) is T}.

Proof Let z be any point of Y, then {z} is closed in 7 and RS-compact in (Y, 7). Thus
Y — {z} is open in r and {z} is RS-compact. Hence Y — {z} is open in R(r). Thus
(Y, R(r)) is T.

. Theorem 3.1 If (Y,r) is Hausdorff, then (Y, R(r)) 18 compact.
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Proof From Lemma (2) in [16], we have that R(r) C ¢(r,) C 7, C n(r) C 7. Using Lemma
(4) in [15] and Theorem 2.1 in {19}, the result follows.

Lemma 3.2 If (Y, R(r)) is Hausdorff, then (Y,7) is normal.

Proof By using Theorem (3.1), the proof is obvious.

Lemma 3.3 If (Y, R(7)) is semi-T}, then (Y,r) s RS-compact space.

Corollary 3.1 If (Y, R(r)) s semi-T}, then RO(Y, R(r)) = RO(Y, ).

Lemma 3.4 If (Y, R(r)) is semi-T}, then aO(Y, R(r)) = aO(Y, 7).

Proof Let G € aO(R(r)), then G Cint gclgintgG Cint,clgint,G = int.cl;int,G. Hence
G € aO(r). Conversely. If G € aO(r), then G C int.cl;int,G = intgclrintgG, then
G € aO(R(r)).

Corollary 3.2 If (Y, R(7)) is semi-T}, then (Y, R(7)) ts a-compact iff (Y,7) is a-compact.
Corollary 3.3 Mazimal a-compact spaces are RS-compact.

Theorem 3.2 (Y, R(7)) is semi-Ty iff (Y, R(r)) is semi-Ty.

Proof Let (Y, R(r)) be semi-Ty, and z,y € Y,z # y, then there exist U,V €SO(Y,7)
such that z € U,y € V and UNV = @, which implies that clg (U nV) = 0. Since (¥, R(7))
is extremely disconnected we have clgintglU = clgU € 7, and clgintgV = clgV € r. Bug
clrU NclgV = clg(UNV) = 0. Hence (Y, R(7)) is semi-T3. The converse is obvious.

Theorem 3.3 (Y, R(r)) is Haussdorff iff (Y, R(7)) is semi-Ts.
Proof It is simillar to the proof of Theorem 3.2.

Theorem 3.4 Let (Y,7) be a space, then:
(a) The class of SO(Y, R(7)) form a topology (denoted by 7') finer than R(7).
(b) RO(Y,R(r)) = RO(Y,").
{c) (Y,7') is RS-compact.

Proof (a) Since (Y, R(r)) is RS-compact, it is extremely disconnected and hence SO(Y,
R(7)) forms a topology such that R(r) c 7.

(b) Let G € 7'. Then clG C clgG. Conversely, let z € clgG, and zre UU e
Hence = € clg intpU € R(r) and clg intrUN # 0. But G € 7', which implies G € SO(Y,
R(r)) and G C clgintpG. Therefore § # clg N clgintplU < (intgG N clgintgU) C
clr(intrG N intgU) C clg(U N G), which implies that U N G # @, and so z € clG.
Hence clgG C cl+G. Thus clg = cl+G for each G € 7'.

(c) Using (b), the result follows.

Lemma 3.5 If(Y,7) is Ry, then (Y, R(7)) is Ry.

Proof Let z € Y, and z € G € R(r). Then G € r, and cl,{z} € G. Since cl,{z} is
compact in (Y, 7), implies that it is compact in (Y, R(r}), and nearly compact in (Y, R(7)).
But (Y, R()) is extremely disconnected, then cl,{z} is RS-compact relative to R(r), which
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implies that it is RS-compact relative to . Thus cl{z} is closed in (Y, R(7)), implies that
clp{z} C cl,{z}. Hence clg{z} = cl,{z}, and (Y, R(r)) is Ro.

Theorem 3.5 Minimal RO spaces are RS~ compact spaces.

Proof Using Lemma 3.5, the result follows.
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