Co-RS-compact Topologies*

M.E. Abd El-Monsef A.M. Kozae A.A.Abo Khadra (Dept. of Math., Faculty of Science, Tanta Univ., Egypt.)

Abstract. A topology $R(\tau)$ is constructed from a given topology τ on a set X. $R(\tau)$ is coarser than τ , and the following are some results based on this topology:

- 1. Continuity and RS-continuity are equivalent if the codomain is retopologized by $R(\tau)$.
- 2. Each topological space has a coarser extremely disconnected topology.
- 3. The class of semi-open sets with respect to $R(\tau)$ is a topology.
- 4. T_2 and semi- T_2 properties are equivalent on a space whose topology is $R(\tau)$.
- 5. Minimal Ro-spaces are RS-compact.
- 6. Maximal α-compact spaces are RS-compact.

1. Introduction

Throughout the present paper (X,σ) and (Y,τ) are topological spaces on which no separation axioms are assumed unless explicitly stated. A set S is said to be regular open (resp. regular closed) if $S = \operatorname{int}(\operatorname{cl}(S))$ (resp. $S = \operatorname{cl}(\operatorname{int}(S))$). A set S is said to be α -open [17], if $S \subset \operatorname{int}(\operatorname{cl}\operatorname{int}(S))$. A set S is said to be regular semi-open [4] (resp. semi-open [12]) if there exists a regular open (resp. open) set O such that $O \subset S \subset \operatorname{cl}(O)$. It should be noticed that the complement of a regular semi-open set is also regular semi-open. The family of all regular semi-open (resp. regular open, regular closed, α -open and semi-open) sets in X is denoted by $\operatorname{RSO}(X)$ (resp. $\operatorname{RO}(X)$, $\operatorname{RC}(X)$, $\operatorname{aO}(x)$, $\operatorname{SO}(X)$). A space X is said to be extremely disconnected if for every open set O of X, $\operatorname{cl}(O)$ is open in X.

In 1980, Hong [8] has introduced a new class of topological spaces called RS-compact spaces which are characterized by the following property "Every regular closed cover has a finite subfamily, the interiors of whose members cover X".

Note The definition of RS-compact space in the sense of Hong is equivalent to that of an *I*-compact space in the sense of Cameron [5]. In 1985 Noiri. [18] has introduced RS-compact relative to X. "A subset S of X is RS-compact relative to X if for every cover $\{V_i: i \in I\}$ of S by regular closed sets of X, there exists a finite subset I_0 of I such that $S \subset \bigcup \{ \operatorname{int}(V_i): i \in I_0 \}$.

In 1989, Abd El-Mondef et al., [2] have introduced RS-continuous function "A function $f: X \to Y$ is called RS-continuous if for each $x \in X$ and each open set $V \subset Y$ containing

^{*}Received Aug. 19, 1991.

f(x) having RS-compact complement, there exists an open set $U \subset X$ containing x such that $f(U) \subset V$. "A space X is said to be almost normal space [14] if for every two disjoint regular closed subsets F_1 and F_2 of X, there exist two disjoint open sets U and V in X such that $F_1 \subset U$ and $F_2 \subset V$. A space X is semi- T_2 [13] (resp. semi- T_2' [1]) if for each $x, y \in X, x \neq y$, there exist U and $V \in SO(X)$ such that $x \in U, y \in V$, and $U \cap V = \emptyset$ (resp. $cl(U) \cap cl(V) = \emptyset$). The space (Y, τ) is R_0 [6] if for each $G \in \tau, x \in G$ implies $cl\{x\} \subseteq G$. We observe that in every R_0 topological space the closure of a singleton set is compact.

A space X is α -compact [3] if each cover of X by α -open sets in X has a finite subcover.

Theorem 1.1^[18] If $A \in RSO(X)$ and B is RS-compact relative to X, then $A \cup B$ is RS-compact relative to X.

Theorem 1.2^[18] Let $A \in RO(X)$. Then A is RS-compact relative to X.

Theorem 1.3^[18] If X is RS-compact and $A \in RO(X)$, then A is RS-compact.

Theorem 1.4^[18] Let X_0 be an open set of X. Then we have:

- (1) If $A \subset X_0$, then $Int_X(A) = Int_{X_0}(A)$.
- (2) If $V \in RSO(X)$, then $V \cap X_0 \in RSO(X_0)$.

Theorem 1.5^[5] Any RS-compact is extremely disconnected.

Theoren. 1.6^[9] Every compact Hausdorff space is normal.

Theorem 1.7^[11] A space (X,τ) is semi- T_2' iff for each $x,y \in X, x \neq y$, there exist $W_{1'}, W_2 \in RC(X,\tau)$ containing x, y respectively, such that $W_1 \cap W_2 = \emptyset$.

Theorem 1.8^[10] The following statements are equivalent for a space (X, τ) :

- (a) (X, τ) is extremely disconnected.
- (b) For each $A \in SO(X, \tau)$, $cl(A) \in \tau$).
- (c) For each $A, B \in SO(X, \tau), cl(A \cap B) = cl(A) \cap cl(B)$.

2. Co RS-compact topologies

Let (Y,τ) be a topological space, and consider $R'(\tau) = \{U \in \tau : Y - U \text{ is RS-compact relative to } \tau\}$. $R'(\tau)$ is a base for a topology $R(\tau)$ on Y, called the Co RS-compact topology on Y. We shall denote by $(Y,R(\tau))$ to be a Co RS-compact space of (Y,τ) , and R-cl (S) (resp. R-int (S)) will denote the closure (resp. interior) with respect to $R(\tau)$ of a subset S of $(Y,R(\tau))$. From definition we have $R(\tau)\subset \tau$, and the following lemma is a direct consequence.

Lemma 2.1 The function $f:(X,\sigma)\to (Y,\tau)$ is RS-continuous iff $f:(X,\sigma)\to (Y,R(\tau))$ is continuous.

Theorem 2.1 For any topological space $(Y, \tau), (Y, R(\tau))$ is RS-compact space.

Proof Consider the $R(\tau)$ regular closed cover $\Delta = \{V_i : i \in I\}$ of Y, and V be some nonemptay member of Δ , there exists $R(\tau)$ open set U such that $U \subset V \subset R$ -cl (U), and

Y-U is RS-compact relative to τ . By using Theorem 1.1 and Theorem 1.2 (Y-V), is RS-compact subspace of Y. Assume that A=Y-V, thus $V_i\cap A\in RSO(A)$, for each $i\in I$ (By using Theorem 1.4, and $A=\cup\{V_i\cap A:i\in I\}$. Thete exists a finite subset I_0 of I such that $A=\cup\{\inf_A(V_i\cap A):i\in I\}$. From Theorem 1.4, we have $\inf_A(V_i\cap A)=\inf_Y(V_i\cap A)\subset \inf_Y(V_i)$, for each $i\in I_0$. Hence $A\subset \cup\{\inf_Y(V_i):i\in I_0\}$, and A=Y-V is RS-compact relative to $R(\tau)$. Thus $(Y,R(\tau))$ is RS-compact space.

Proposition 2.1 The following are hold:

- (a) $RO(Y, R(\tau)) \subset RO(Y, \tau)$.
- (b) $cl_{\tau}G = cl_{R}G$, for all $G \in RO(Y, R(\tau))$.
- (c) $RSO(Y, R(\tau)) \subset RO(Y, \tau)$.

Proof (a) Let $G \in RO(Y, R(\tau))$, then $G = \operatorname{int}_R \operatorname{cl}_R(G) = \operatorname{cl}_R(G)[(Y, R(\tau))]$ is extremely disconnected. But $\operatorname{cl}_T G \subset \operatorname{cl}_R G$, implies that $G = \operatorname{cl}_T G$ and $G = \operatorname{int}_T \operatorname{cl}_T G$.

- (b) From (a), the proof is obvious.
- (c) By using (b), the result follows.

Proposition 2.2 Let X be an extremely disconnected space then:

- (a) The union of a finite regular open sets is a regular open set.
- (b) If X is the union of a finite number of regular open RS-compact subspaces, then X is RS-compact space.

Lemma 2.2 If $(Y, R(\tau))$ is almost normal space, then (Y, τ) is RS-compact.

Proof Let F_1 and F_2 be two disjoint $R(\tau)$ regular closed sets, then there exist disjoint $R(\tau)$ open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$. Hence $Y = Y - (U \cap V) = (Y - U) \cup (Y - V) = (Y - F_1) \cup (Y - F_2)$. By using Proposition 2.1 and Theorem 2.1 and Proposition 2.2, we arrive (Y, τ) is RS-compact.

Theorem 2.2 (Y, τ) is RS-compact iff $\tau = R(\tau)$.

Proof Let $\tau = R(\tau)$, then (Y, τ) is RS-compact. Conversely, we assume that (Y, τ) is RS-compact, to prove that $\tau \subset R(\tau)$. Let $U \in \tau$, then $\operatorname{cl}_{\tau} U \in \tau$, and $Y - \operatorname{cl}_{\tau} U \in \operatorname{RO}(Y, \tau)$, which implies that $Y - \operatorname{cl}_{\tau} U$ is RS-compact relative to τ . Hence $\operatorname{cl}_{\tau} U \in R(\tau)$ and $U \in R(\tau)$.

3. Separation Properties

The property of being T_1 space is expansive, that is, if (Y, τ) is T_1 and $\tau \subset \tau'$ then (Y, τ') is T_1 but it is not generally contractive. The following result proves the contractivity of T_1 property from (Y, τ) to $(Y, R(\tau))$.

Lemma 3.1 If (Y, τ) is T_1 , then $(Y, r(\tau))$ is T_1 .

Proof Let x be any point of Y, then $\{x\}$ is closed in τ and RS-compact in (Y, τ) . Thus $Y - \{x\}$ is open in τ and $\{x\}$ is RS-compact. Hence $Y - \{x\}$ is open in $R(\tau)$. Thus $(Y, R(\tau))$ is T_1 .

Theorem 3.1 If (Y, τ) is Hausdorff, then $(Y, R(\tau))$ is compact.

Proof From Lemma (2) in [16], we have that $R(\tau) \subset c(\tau_s) \subset \tau_s \subset n(\tau) \subset \tau$. Using Lemma (4) in [15] and Theorem 2.1 in [19], the result follows.

Lemma 3.2 If $(Y, R(\tau))$ is Hausdorff, then (Y, τ) is normal.

Proof By using Theorem (3.1), the proof is obvious.

Lemma 3.3 If $(Y, R(\tau))$ is semi- T'_{2} , then (Y, τ) is RS-compact space.

Corollary 3.1 If $(Y, R(\tau))$ is semi- T'_2 , then $RO(Y, R(\tau)) = RO(Y, \tau)$.

Lemma 3.4 If $(Y, R(\tau))$ is semi- T'_2 , then $\alpha O(Y, R(\tau)) = \alpha O(Y, \tau)$.

Proof Let $G \in \alpha O(R(\tau))$, then $G \subset \operatorname{int}_R \operatorname{cl}_R \operatorname{int}_R G \subset \operatorname{int}_\tau \operatorname{cl}_R \operatorname{int}_\tau G = \operatorname{int}_\tau \operatorname{cl}_\tau \operatorname{int}_\tau G$. Hence $G \in \alpha O(\tau)$. Conversely. If $G \in \alpha O(\tau)$, then $G \subset \operatorname{int}_\tau \operatorname{cl}_\tau \operatorname{int}_\tau G = \operatorname{int}_R \operatorname{cl}_R \operatorname{int}_R G$, then $G \in \alpha O(R(\tau))$.

Corollary 3.2 If $(Y, R(\tau))$ is semi- T'_2 , then $(Y, R(\tau))$ is α -compact iff (Y, τ) is α -compact.

Corollary 3.3 Maximal α -compact spaces are RS-compact.

Theorem 3.2 $(Y, R(\tau))$ is semi- T_2 iff $(Y, R(\tau))$ is semi- T_2' .

Proof Let $(Y, R(\tau))$ be semi- T_2 , and $x, y \in Y, x \neq y$, then there exist $U, V \in SO(Y, \tau)$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$, which implies that $\operatorname{cl}_R(U \cap V) = \emptyset$. Since $(Y, R(\tau))$ is extremely disconnected we have $\operatorname{cl}_R \operatorname{int}_R U = \operatorname{cl}_R U \in \tau$, and $\operatorname{cl}_R \operatorname{int}_R V = \operatorname{cl}_R V \in \tau$. But $\operatorname{cl}_R U \cap \operatorname{cl}_R V = \operatorname{cl}_R (U \cap V) = \emptyset$. Hence $(Y, R(\tau))$ is semi- T_2' . The converse is obvious.

Theorem 3.3 $(Y, R(\tau))$ is Haussdorff iff $(Y, R(\tau))$ is semi- T_2 .

Proof It is similar to the proof of Theorem 3.2.

Theorem 3.4 Let (Y, τ) be a space, then:

- (a) The class of $SO(Y, R(\tau))$ form a topology (denoted by τ') finer than $R(\tau)$.
- (b) $RO(Y,R(\tau)) = RO(Y,\tau')$.
- (c) (Y, τ') is RS-compact.

Proof (a) Since $(Y, R(\tau))$ is RS-compact, it is extremely disconnected and hence $SO(Y, R(\tau))$ forms a topology such that $R(\tau) \subset \tau'$.

- (b) Let $G \in \tau'$. Then $\operatorname{cl}_{\tau'}G \subset \operatorname{cl}_RG$. Conversely, let $x \in \operatorname{cl}_RG$, and $x \in U, U \in \tau'$. Hence $x \in \operatorname{cl}_R$ int_R $U \in R(\tau)$ and cl_R int_R $U \cap \neq \emptyset$. But $G \in \tau'$, which implies $G \in \operatorname{SO}(Y, R(\tau))$ and $G \subset \operatorname{cl}_R \operatorname{int}_RG$. Therefore $\emptyset \neq \operatorname{cl}_R \cap \operatorname{cl}_R \operatorname{int}_RU \subset (\operatorname{int}_RG \cap \operatorname{cl}_R \operatorname{int}_RU) \subset \operatorname{cl}_R(\operatorname{int}_RG \cap \operatorname{int}_RU) \subset \operatorname{cl}_R(U \cap G)$, which implies that $U \cap G \neq \emptyset$, and so $x \in \operatorname{cl}_{\tau'}G$. Hence $\operatorname{cl}_RG \subset \operatorname{cl}_{\tau'}G$. Thus $\operatorname{cl}_R = \operatorname{cl}_{\tau'}G$ for each $G \in \tau'$.
 - (c) Using (b), the result follows.

Lemma 3.5 If (Y,τ) is R_0 , then $(Y,R(\tau))$ is R_0 .

Proof Let $x \in Y$, and $x \in G \in R(\tau)$. Then $G \in \tau$, and $\operatorname{cl}_{\tau}\{x\} \subset G$. Since $\operatorname{cl}_{\tau}\{x\}$ is compact in (Y, τ) , implies that it is compact in $(Y, R(\tau))$, and nearly compact in $(Y, R(\tau))$. But $(Y, R(\tau))$ is extremely disconnected, then $\operatorname{cl}_{\tau}\{x\}$ is RS-compact relative to $R(\tau)$, which

implies that it is RS-compact relative to τ . Thus cl_{X} is closed in $(Y, R(\tau))$, implies that $\operatorname{cl}_{R}\{x\} \subset \operatorname{cl}_{\tau}\{x\}$. Hence $\operatorname{cl}_{R}\{x\} = \operatorname{cl}_{\tau}\{x\}$, and $(Y, R(\tau))$ is R_{0} .

Theorem 3.5 Minimal RO spaces are RS-compact spaces.

Proof Using Lemma 3.5, the result follows.

References

- [1] M.E. Abd El-Monsef, Studies on some pretopological concepts, Ph.D. Thesis, Tanta Univ., 1980.
- [2] M.E. Abd El-Monsef, R.A. Mahmoud, A.A. Nasef, Functions based on compactness, to appear.
- [3] R.H. Atia, S.N. El-Deeb, A.S. Mashhour, α -compactness and α -homeomorphism, preprint.
- [4] D.E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72(3)(1978), 581-585.
- [5] D.E. Cameron, Some maximal topologies which are QHC, Proc. Amer. Math. Soc., 75(1)(1979), 149-156.
- [6] A.S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly, 68(1961), 886-893.
- [7] D.B. Gauld, M. Mrsevic, I.L. Reilly, M.K. Vamanamurthy, Colindelöf topologies and L-continuous functions, GLASNIK Math., 19(39)(1984), 297-308.
- [8] W.C. Hong, RS-compact spaces, J. Korean Math. Soc., 17(1980), 39-43.
- [9] S.T. Hu, Elements of general topology, Holden Day, IM, 1972.
- [10] D.S. Jankovic, On locally irreducible spaces, Ann. de la Soc. Sci. de Bruxelles, T, 97, II, pp. 59-72, 1983.
- [11] A.M. Kozae, Studies on some maximal and minimal topological consepts, Ph.D. Thesis, Tanta Univ., 1988.
- [12] N. Levine, Semi-open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [13] S.N. Maheshwari, R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, T. 3(89)(1975), 395-407.
- [14] A.S. Mashhour, F.S. Mahmoud, I.A. Hasanein, M.A. Fath Alla, On some generalizations of compactness, to appear.
- [15] M. Mrsevic, I.L. Reilly, M.K. Vamanamurthy, On semi-regularization topologies, J. Autstral Math. Soc., (Series. A), 38(1985), 40-54.
- [16] M. Mrsevic, I.L. Reilly, On N-continuity and Co-N-closed topologies, Ricerche di Math., Vol. XXXVI, fasc I⁰, 1987.
- [17] O. Njasted, On some classes of nearly open sets, Pac. J. of Math., 15(3)(1965), 961-970.
- [18] T. Noiri, On RS-compact spaces, J. Korean Math. Soc., 22(1985), No. 1, pp.19-34.
- [19] M.K. Singal, A. Mathur, On nearly compact spaces II, Boll. Della Un. Math. Italiana, 9(4)(1974), 670-678.