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1. Introduction

The prime end theory gives a complete but abstract description of the relation between
topological properties of a domain and the continuity behaviour of the mapping function
(see [1], [2]). It is still necessary to study the boundary correspondence of conformal
mappings in general sense. Some results of this kind have been obtained, for instance, by
M. Essen [3] and Chr. Pommerenke [4].

The aim of this paper is to study how the local geometric structure of a domain at its
boundary points determines analytic properties of the mapping function. For this reason
we give a classification of the boundary points of a domain.

Through this paper, except for few cases, G denotes a simply connected domain with
at least two boundary points, oo &€ G, and f is a conformal mapping of D onto G. For
¢ € 3D the expression f(¢) = w means f has the angular limit w at ¢. Let

fHw)={¢c€aD: f(5) = w}, (1.1)

Aw,f)={c€dD:weC(f;)}, (1.2)

where C(f,¢) is the cluster set of f at ¢.

For w € 3G let N.(w) denote the e-neigh urhood of w. We divide the connected
components of N.(w) N G into two parts: the set Po(w,€) of all components with w as a
boundary point and the set Pj(w,¢) of the other components. Let

d(e,w) = inf{ dist (w,Vy(€)) : Vu(€) € Pi(w,€)};
d(e,w)=¢, if Pjy(w,e)=0. (1.3)

If there exists 9 > 0 with d(eo,w) = O then w is called a complicated boundary point of
G, otherwise w is a simple one.

Note that w is a simple boundary point of G if and only if G is locally connected at
w. The classification applies to open sets.

Here we shall show that
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(i) w is a simple boundary point of G if and only if A(w, f) = f~}{w);

(1) if G is bounded then any analytic univalent function in G has no Koebe arc if and
only if every boundary point of G is simple;

(iii) a compact set A in complex plane is locally connected if and only if every boundary
point of its complement is simple and the number of all connected components of A
is finite;

(iv) let |E| denote the number (integer or oo) of points of the set E. Write po(e) =
|Po(w,€)|. We have:

If w is a simple boundary point of G then py(€) is increasing when ¢ is decreading and
£ (w)| = lim Po(e) = | A(w, 1)}
If wis a complicated boundary point of G then

|f 7 (w)l = lim Po(e) < |A(w, /)]

with strict inequality if |f~!(w)| < cc.

Our discussion begins with a research into accessible boundary points. w € 3G is
accessible in G if and only if there exists a sequence Vy,(¢,) € Po(w,e,),n = 1,2,--- ,with
Vw(e1) D Vu(ez) D -+- and g, — oo. Suth a sequence is called a regular component
sequence at w. Two regular sequences {Vy,(€,)} and {V] (e!,)} are called to be in equivalent
if there exists N > 0 such that V,,(e,) NV, (e},) = 0 for n > N. there exists a one-to-one
correspondence between f~!(w) and M(w) where M(w) is a complete set of inequivalent
regular sequences at w.

Whether there exists a domain which has no simple boundary points is an open prob-
lem. A domain that all of its simple boundary points is a set of zero linear measure has
been constructed.

2. On Accessible Boundary Points

The results to be developed in this section are, with modifications, due to X. Yang [5].
We need the following lemma which is easy to prove.

Lemma 2.1 Let y,(n =1,2,---) be a sequence of Jordan arcs which do not intersect each
other ezcept a common end of v, and Ypp1,n =1,2,--+. If v, = w(n — o) end w & v,
for any n, then

oo .
7= {w}U U In (2.1)
n—1
15 a Jordan are with w as an end.

Theorem 2.1 For w € 3G, the follouing conditions are equivalent :
(i) There ezists a regular component sequence at w;



2/

(1) w is an accessible boundary point of G;

(115) There exists ¢ € 3D with f(¢) = w.

Proof (i)=(ii): Let {V,,(en)} be a regular component sequence at w. We may assume
Vu(en)\Vuw(ent1) #0,n=1,2,.--. Taking

Wy, € Viy(en)\Vu(€nt1) (2.2)

for n = 1,2. Let T'; ¢ V,,(¢;) be a Jordan arc with ends w; and w;. We may suppose
that e3 < dist(w,T';). Then we take ws as (2.2) with n = 3 and a Jordan arc 'y C V,(e2)
joining wy and ws. Let 7; denote the subarc of I'; between. w; and the first intersection
w} with T's.

Repeating the preceding process, we may suppose €4 < dist(w,I'2) and take w4 as
(2.2) with n = 4 and then a Jordan arc I'; C V,,(e3) joining ws and wy. Let v, denote the
subarc of I'; betweem w} and the first intersection wj with I's.

Continuing this procedure infinite times, we obtain a sequence {7,} and then a Jordan
arc v defined by (2.1) which lies in G except for the end w by Lemma 2.1.

The implication (ii)=>(iii) is obvious (see [2]).

(iii)=>(i): The condition (iii) implies }1_12 f(r¢) = w. Therefore, for any strictly de-
creasing sequence {&,} tending to zero there exists a corresponding positive sequence {r,}
tending to 1 such that

{f(r¢) :rn <r<1} C N, (w)NG.

Let V,(e,) be the component of N, (w) NG which contains {f(r¢) : 1, < r < 1}. Then
Vw(en) € Po(w,€,) and {Vy,(e,)} is a regular component sequence at w.

Lemma 2.2 For w € 3G, the following conditions are equivalent:
(i) There exist two inequivalent regular component sequences at w;
(5) There exist two distinct points ¢, and ¢z on 3D such that f(¢1) = f(¢2) = w.

Proof (i)=>(ii): Let {Vy,(en)} and {V (e,)} be two inequivalent component sequences at
w. We may assume that Vy,(e,) NV, (ep) = 8,7 = 1,2, - .. From the proof of Theorem 2.1
there exist two Jordan arcs 7; and 7, that which end at w and otherwise lie in V,, (g1) and
V! (e1) respectively. Therefore, f~!(v1\{w}) and f~!(y2\{w}) are two asymptotic paths
of f, say, end at ¢; and ¢; on 3D respectively, and then f(¢;1) = f(¢2) = w (see [2]). We
have to prove ¢1 # ¢2.

Suppose ¢1 = ¢2 = ¢. Let w; be the other end of v;,7 = 1,2. We join w; and w2 by a
Jordan arc T' in G such that 43 UT U3 is a Jordan curve whose inner domain is denoted
by Gi1. Let Dy = f~}(G1), then f1 = f|p, is a conformal mapping of D; onto G; and can
be extended to a homomorphism of D; onto 31~ There exist

zn € fH{m\{w}), 2n € 7 (m\{w})  with 2, =g, 2, = ¢(n — o)

such that [z,,2]] € D1,n=1,2,---. Let wy, = f(2s), w) = f(2}), then w, € V,, (1), w), €
Vl(e1). It is clear that T'y = f{[2n,2h]) is a Jordan arc joining w, and w), in G with
T, — w(n — o0), and so w), € V,,(e,) for large n, contrary to Vi, (1) NV, (e1) = 0.
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(ii)=>(i): Let ¢1,¢2 € D, ¢1 # ¢2 with f(¢1) = f(s2) = w. By using the method in the
proof of Theorem 2.1 we can obtain, from the Jordan arcs f(r¢;) and f(rg2)(0 < r < 1),
two regular component sequences at w, say, {Viy(en)} and {V(€,)} respectively. We have
to prove that they are in equivalent.

If they are equivalent then V, (¢) = V) (e),n = 1,2,---. Let {r,} be a positive se-
quence decided by {e,} as that in the proof of Theorem 2.1. Let w, = f(rn¢1),w;, =
f(rn¢z). There exists a Jordan arc v, joining w, and w}, in Vy(e,). Let Ty = f71(v4),
we have :

Jim diam[ly, > [¢1 — ¢2| > 0 and f(I'p) — w(n — o).

It is impossible because f has no Koebe arcs (see [2]).
It follows that

Theorem 2.2 There ezists a one-to-one correspondence between M(w) and f~1(w).

3. The Characteristic of two Kinds of Boundary Points

Our fundamental result is the following.
Theorem 3.1 w € 3G is if and only if A(w, f) = f~}(w).

bf Proof (a) Let w be a simple boundary point of G. Suppose that A(w, f)\f~(w) # 0,
then f has no asymptotic paths at any point of the set A(w, f)\f~}(w).

Let ¢ € A(w, f)\f~}(w). Since f has angular limits almost everywhere on 4D and
f71(w) is a set of zeto capacity (see [2]), there exist two point sequences ¢/, and ¢/ of 8D
which tend to ¢ respectively from two sides of ¢ asymptotically such that f has angular
limits different from w at ¢, and ¢i. Let S,, denote the arched domain bounded by [, ¢/
and g’z\gj,' containing ¢. We have S,41 C S, and d, = dist(w, f([¢},¢n])) > 0. We take a
positive decreasing sequence {e,} with € — O(n — oo) such that

(1)) en+1 < dlep,w),n=1,2,...;

(i) en <dp,n=1,2,---.

From (i) we obtain

{N, ., (w) NG} C UV, (en) (3.1)

where the union is for all V,,(e,) € Po(w, en).
From (ii) we have

{Newis(w) N f(Snt1)} C UVy(en) : (3.2)

where the union is for all V,,(e,) € Po(w,e,) with Vi (en) C f(Sn)-

Note that w is also a simple boundary point of each component of the last union.
Then there exists a regular component sequence {Vy, ()} such that Vy,(e,) C f(Sy), that
is, f71(Vw(en)) C Sn,n = 1,2,---. And so we obtain a Jordan arc v as we have done in
the proof of Theorem 2.1 such that f~1(v) is an asymptotic path of f at ¢. This is a
contradiction. It follows that A(w, f) = f~1(w).

(b) Suppose A(w,f) = f~}(w). If wis a complicated boundary point of G, we
have d(ep,w) = O for some & > 0. And then there exists a sequence {w,} in G with

VA



&

wn € Vi (€0) € Pi(w,&0), wn — w(n — o0). Let P{(w,eo) denote the set of all components
in Py(w,&o) with w as an accessible boundary point. We have

Zn = f_l(wn) €D, = D\ U f—l(Vw(Eo))

where the union is for all V,,(eo) € Pj(w,&0). Obviously, f~1(w)NdD; = 0 and then every
limit point of {z,} belongs to A(w, f)\f~!(w), contradicting A(w, f) = f~1(w). So w is
simple.

Corollary w € 3G is cothplicated if and only if A(w, f)\f~(w) # 0.

It is clear that |A(w, f)| and |f~!(w)| are independent of the choice of the mapping
function f. They are called the multiplicity and the pseudo- multiplicity of the boundary
point w, denoted by m and p, respectively. Set po(e) = |Po(w,e)]. We have

Theorem 3.2 Let w € 3G with multtphctty m and pseudo-multiplicity p.
(i) If w is simple, then

p= llH(l)po(é’) =m; ‘ (3.3)
. &e—
(1) If w is complicated, then

p=limpo(e) <m (3.4)
e—0

with strict inequality if p < oo.

Proof Let w be a simple boundary point of G, then po(¢) > 1 for any € > 0. Note
that w is also simple for each component in Py(w,¢). This implies that pg(e) increases
when € decreases. Let pp = lim pg(e). We choose a positive decreasing sequence {£,} with
en — 0(n — o0) satisfying e,41 < d(ep, w)n = 1,2,---. Then we have (3.1).

If po < oo, then there exists ng such that po(en) = po for n > ng. So we obtain pg
inequivalent regular component sequences at w and then (3.3) is true by Theorems 2.2
and 3.1.

If po = oo, then for any given positive integer N we have po(€,) >N when n > ng for
some ng. Hence we can construct N inequivalent regular component sequences at w and
so p > N. It follows that p = co and (3.3) is also true. (i) is proved. ‘

The proof of (ii) is similar as that of (i).

4. Simple Boundary Points and Local Connectivety

The well-known contiunous extension theorem (see [2]) can be stated as follows.

Theorem 4.1 f has a continuous extension to D if and only if every boundary point of
G 1s simple.
Furthermore, we have -

Theorem 4.2 A compact set E in complez plane is locally connected if and only if every

boundary point of its complement ts simple and the number of.all connected components
of E 1s finste.



Proof If E is locally connected, then, the number of all connected components of E' is
finite. Let Eo be any component of E, which is also locally connected. By the continuous
extension theorem, every boundary point of C'\Ey is simple and then is also a simple
boundary point of C\ E. Therefore, all the boundary points of the complement of E are
simple.

By Theorem 4.1 the converse is also true because any union of finitely many locally
connected sets is also locally connected.

5. Simple Boundary Points and Koebe Arcs

Let G be a simply connected dormain, and ¢ be a meromorphic function in G. If a
sequence of Jordan arcs C,, C G satisfies (i) diam C,, > a > 0 and (ii) ¢(z) — ¢ for
2 € Cp,n — oo for some ¢ € C (the extended plane), then it is called a sequence of Koebe
arcs with respect to the meromorphic function g. We say that ¢ has no Koebe arcs if no
such sequence exists.

Theorem 5.1 If G is bounded, then any analytic univalent function in G has no Koebe
arcs if and only 1f every boundary point of G is simple.

Proof (a) If G has a complicated boundary point w then C(f,¢) is a continuum for any
given ¢ € A(w, f)\f 1(w). Let w',w" € C(f,¢) with |[w' — w"| = diamC(f,¢) > 0. There
exist two sequences {2z}, } and {2} in D tending to ¢ with f(z},) — w', f(z) — w"(n — o0).
We may assume that 2!, # 2/,n = 1,2,---. Denote ¢ = f 1,7, = [2},21),Cpn = f(n),
then {C,} is a sequence of Koebe arcs with respect to ¢ which is analytic and univalent
in G. This shows that the condition is necessary.

(b) If there exists a sequence {C,} of Koebe arcs with respect to some g which is
analytic and univalent in G, then g(Cr) — ¢ € 902 where @ = g(G). Let h be a conformal
mapping of {1 onto D, then f = g 'h~! is a conformal mapping of D onto G. Note that
A(w, f) does not contain any arc by the Riesz uniqueness theorem, there exists a subse-
quence {Cy, } of {C,} such that h{g(C,,)) — ¢, € dD(k — 00). Then f is not continuous
at ¢, because diam C,, > a > 0,k = 1,2,---. Let w € C(f,¢,) and w # f(¢,) if f(s,)
exists. Then ¢, € A(w, f)\f (w). It follows that w is a complicated boundary point of
G and then the condition is sufficient. ’

6. Notes

From Moore’s plane triode theorem (see [6]), the set of all boundary points of G with
pseudo-multiplicity p > 3 is at most countable.

A Jordan domain has no complicated boundary point. But whether there exists a
domain which has no sumple boundary point is still an open problem. Now we construct
a simply connected domain such that all its simple boundary points form a set of zero
linear measure. Let K be the Cantor set in [0,1],7 = § + ¢, and E = Uex|z,n]. Then
G = C\E is such a domain. The set of all its simple boundary points is K U {n}.
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