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On 3-Dimensional Cooperative Systems in the Box [p,q]*
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1. Introduction

Consider a C! system of differential equations defined on N
z = F(z), (1)

where N C R3 is a neighborhood of the box [p,q] = {z € R® : p; < z; < ¢;,¢{ = 1,2,3}
with equilibria only at p and ¢. F is said to be ¢ooperative in [p, ¢| if the Jacobian matrix
DF(z) at every z € [p,q] has nonnegative off-diagonal entries. In an earlier work (1], the
author has proved that if F is cooperative and irreducible (that is, DF(z) is irreducible
for every z € [p,q]) then every trajectory in [p,q| converges (see [1, Lemma 1]). This
result plays an important part in proving the existence of an orbit connecting p and ¢
by WaZewski retraction method (see [1]). More general result than [1, Lemma 1] was
proved by Hirsch (see [4, Thm. 10]). The proof of above results deponds strongly on the
itreducibility of DF(z) (or the strong monotonicity of the flow generated by F'). Using the
idea present in [2], we can drop the condition that D F(z) is irreducible for every z € [p, q].
To be more precise, we shall prove the following:

Theorem 1 Let F be a 3-dimensional C! vector field defined on a neighborhcod N
of the boz [p,q] with equilibria only at p and q. Suppose the off-diagonal terms in the
Jacobian matriz DF(z)are nonnegative for every = € [p,q]. Then: either every trajectory
in [p, q]— Bd|p, q] approaches q,or else every trajectory in |p, q|— Bd|p, ¢| approaches p, where
Bd indicates the boundary of a set.

By this theorem,we can improve [1, Thm. 2] which gives the existence of connecting
orbits.

Corollary 2 Suppose that the assumpiions of Theorem 1 hold and that F points into the
interior of [p,q] on Bd|p,q] — {p,q}. Then there is an orbit of F contained in [p,q] which
joins p and q.

Remark For an n-dimensional cooperative system, in order to guarantee the existence of
an orbit connecting equilibria p and ¢(p < ¢), one always imposes the condition that D F(z)
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Proof Using the method developed in 2] with minor modifications, we give the following
proof. We only prove (ii) with § = 1,7 = 2,k = 3. The other cases being similar.

It follows from the Kamke’s theorem that p < z(t) < ¢ for all ¢ > 0, therefore,
w(z) C [p,q] for any z € [p,q]. By invariance, y(t) € w(z) cBd[p,q] for all t € R,
where y(t) is the solution of (1) passing through y. Since y € ¢ — dR3 and ¢ < ¢' for
i = 1,2,y = ¢3. Therefor, y(t) € ¢g—Int(x3) for |t] sufficiently small where Int indicates
the interior of a set. Set

t* = sup{t : y3(r) = ¢® for all 7 € [0,¢]}.

Obviously, t* > 0. We claim that t* = co. If not, t* < co. By the deﬁnition of t* and
the continuity of y(t),y%(t) = ¢ for all t € [0,t*] and either y!(t*) = ¢* or y*(¢*) = ¢%.
Without loss of generality, we suppose the latter case occurs. Denote F = (Fy, F, F3).
Then (y'(t),y?(t)) for ¢ € [0,¢*] is a solution of the following 2~ dimensional cooperative
system:

&= Fi(z,y,4°), §= Fa(z,y,¢%). (2)

Since ¢ = (¢!, ¢%, ¢) is an equilibrium of (1), (z,y) = (¢*, ¢?) is also a solution of (2). It
follows from ¢! > y!,¢% > y? and the Kamke’s theorem that ¢* > y*(t*) and ¢* > ?(t*),
contradicting y?(¢*) = ¢%. This contradiction shows t* = oo, that is, y(t) € ¢ — x° for
t > 0. If there is a t; < O such that y(t;) & ¢ — #°, then it follows from y(t) EBd[p, g for
all t € R that either y(t1) € ¢— Int(w‘) for i # 3 or y(tl) € p+Int(1r’) for some 5. Then, as
just proved, either y(t) €q—n*fori#3or y(t) € p+ #7 for some j. Then, as just proved,
either y(t) € ¢ — #* for i # 3 or y(t) € P + #7 for some j here t > t;, whlch contradicts
y € ¢—Int(#3). This proves (ii) of lemma 3.

3. Proof of the Results

Proof of Theorem 1 By the Kamke’s theorem, w(z) C [p, ] for every z € [p,q]. We
claim that w(z) contains an equilibrium. Otherwise, w(z) is a cycle (see [6,Thm. 4.1]).
By (ii) of Lemma 1, [p, q] contains an equilibrium which is unrelated to any point of w(z)
by > or <. So thls equlhbnum is either p or ¢ and w(z) CBd[p,q] Because w(z) is a
cycle, there is a point y = (y!,y?, y%) € w(z) such that either y* — p' > 0 for two indices
iory —¢ < Ofor two indices 5. By Lemma 3, either w(z) c p+ n? for some j or
w(z) C ¢ — ¥ for some k, that is, w(z) is a cycle of a 2-dimensional cooperative system,
contradicting Lemma 2. This shows that our claim holds. Since [p,g] only contains the
equilibria p and ¢, without loss of generality, we can assume that ¢ € w(z). If w(z)—q # 0,
then we can prove there is a point y € w(z) such that y* — ¢* < 0 for two indices i. By
(ii) of Lemma 3, y(t) € ¢ — n’ for some j and all ¢ € R, that is, y(t) is a solution of a
2-dimensional cooperative system. The compactness of w(z) implies that y(t) is bounded
on R. Applying lemma 2, we know that y*(t) is bounded and monotone for |t| sufficiently
large and for ¢ = 1,2,3. Since y(t) € ¢ — 77 for all t € R and ¢ — 77 only contains the
equilibrium q’tli.lg y(t) = q and t_l}r_h(» y(t) = q. So there exists a real number T > 0 such
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that y(—T') X y. By the Kamke’s theorem,

12 y(-T) 2 y(T) 2 -+ 3 y(nT),

It follows that ¢ = nll'ngo y(nT) < y < ¢, a contradiction. This proves w(z) = ¢. So far we
have proved that every trajectory in [p, q| converges to p or g¢.

Let L denote the open line segment with endpoints p and q. If z € L and w(z) = p,
that is, tlirn z(t) = p. For z € [p, z], applying the Kamke’s theorem, we can conclude that
p < z(t) Soox(t) for all ¢ > O, which implies that z(t) — p as t — oo. Therefor, every
trajectory in {p, z] converges to p. Similarly, if £ € L and w(z) = ¢, then every trajectory
in [z, q] converges to g. Let A= {z € L:w(z) =p}and B = {z € L :w(z) = q}. By the
facts proved above, A and B are open in L with the relative topology, and L = AU B.
From the connectedness of L we conclude that either L = A or L = B. Without loss of
generality, we may assume that L = B, that is, w(z) = ¢ for all z € L. Fix any point
z € [[p,¢]- Then there exists z € L with z < z < q. Applying the Kamke’s theorem, we
know that z(t) < z(t) < ¢ for all t > 0. Therefore, w(z) = ¢ implies that w(z) = ¢, that
is, w(z) = ¢ for any z € [[p, ¢]. This completes the proof.

Proof of Corollary 2 Since F points into the interior of [p, q] on Bd|p, q] — {p, ¢}, every
point in Bd[p,q] — {p, ¢} is strict ingress. From Theorem 1 it follows that either every
trajectory in [p,q] — {p} approaches g; or else every trajectory in [p,q] — {¢} approaches
p. The rest proof is quite the same as that of [1,Thm. 2]. So we omit it.

References

(1] Jiang Jifa, On the ezistence and unigueness of connecting orbits for two and three dimensional
cooperative systems, Journal of Mathematical Rescarch and Exposition, 10:2(1990), 199-203.

(2] Jiang Jifa, A note on a global stability theorem of M. W. Hirsch, Proc. Amer. Math. Soc.
112:3(1991), 803-806. ‘

[3] Jiang Jifa, On the ezistence and uniqueness of cornnecting orbits for cooperative systems, Acta
Math. Sinica, New Series 8:2{1992),184- 188.

{4 M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine
Angew. Math. 383(1988),1-53.

[5] M. W. Hirsch, Systems of differential equations that are competitive or cooperative, V: Xon-
vergence in S-dimensional systems, J. Diff. Eqns. 80(1989),94-106.

[6] M. W. Hirsch, Systems of differential equations that are competitive or cooperative, I: Limit
sets, SIAM J. Math. Anal. 13(1982),167- 179.

[7] M. W. Hirsch, Systems of differential equations that are competitive or cooperative II: Con-
vergence almost everywhere, STAM J. Math. Anal. 16(1985),432-439.

|8] C. Conley and J. Smoller, Viscosity matrices for two- dimensional nonlinear hyperbolic sys-
tems, Communs Pure appl. Math. 23(1970), 867-884.

[9] J. G. Conlon, A theorem in ordinary differential equations with an application to hyperbolic
conservation laws, Advances in Math. 35(1980},1-18.



‘\ ."
K

(10] J.G. Conlon, On a theorem of Conley and Smoller, In Global Theory of Dynamical Systems,
Lect. Notes in Math. 819(1980), 90- 95. Springer, Berlin.

{11] J. F. Selgrade, On the existence and unigueness of connecting orbits, Nonliear Anal. Theory
Methods Appl. 7(1983),1123-1125.

[12] H. L. Smith, Systems of ordinary differential equations which generate an order preserving
flow, A survey of results, SIAM Review, 30(1988),87-113.

[13] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston,
1965. , :

=HEFEr.JRBNEERYS
% 8 K
(FPUTR IR E R TEW 241000)
] ®

% FREHK T EL, ] ARAERRY, BT &R F RS0 » M ¢ RAITEY
Tlrdd A S A EFNRRERHT p, REWKT ¢ W5+, MR, (I BT LR p ¢ P
A F @ F R R e, o] B9 WL ¢] HEEE— R PUEES » M o

— 45 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



