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On Problem 24 of P. Turan, II*

Sh: Yingguang
(Computing Center, Chinese Academy of Sciences, Beijing)

Abstract In this paper we obtain a beter answer to Problem 24 of P. Turin [1]: If the
Hermite-Fejer interpolation process converges for any f € C|—1,1] then the Lagrange
mterpolatlon process defined on the same nodes converges for each f with E,(f) =
o(n~ 1), where E, () is the deviation of best uniform approximation of f € C[—1,1] on
[—1,1] by polynomials of degree < n.

1. Introduction and Results

Consider a triangular matrix X of nodes
1<z <Tp2 << ZTpp<1, n=12,... (1)

and sometimes for simplicity omit the superfluous notations. Write for f € C[-1,1| and
for each fixed n(|| - || stands for the Chebyshev norm)

wn(2) = (2~ z1)(e — z2) -~ (= — z5);

Ik(z‘) nk(z) -("x—‘:—';gz)m = 1,2,...,11

mma=iﬂumm;

) =1~ 2o 2)]i(e) = (o), k= 1,2,0.m
Bi(z) = (z - ze)l(2), k=1,2,...,n

Ho(f,2) = 3" f(z)As(2);
k=1

@ﬂ;Lm= S 1Bl An ZN(@
k=1

To draw a general conclusion from the behavior of the polynomials H,(f,z) on those
of Ln(f,z), P. Turan proposed his Problem 24 [1]:
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bn =

n:

— B5 —
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Is it true that, for any matrix X satisfying

Jim (| Ha(f,2) - f(2)l| =0, Vf € C[-1,1, (2)
we have
Jm La(f2) - S =0 (3

for all functions f which are continuously differentiable in [-1,1]?
At first Vértesi [2] deduces the following estimates (Here and later the signs“(0” and
depend only on X).

(%]
o

Theorem A For any matriz X
(a) vn= O("i“n)i
() An=O(n3(In2n)u,);
(c) X pn= 0(1)7 .
An = Of(n3).
Based on this theorem he gets the first answer to Problem 24 of P. Turan without
further assumption (e.g., p-normality, etc.), since (2) implies that u, = O(1).

Theorem B If up = O(1), then (3) holds for all f € {f : E.(f) = o(n_%)}, where E,(f)
is the deviation of best uniform approzimation of f € C[-1,1] on [—1,1] by polynomials
of degree < n.

Later, the author in [3] deduces the estimate

= O(ntud)

3" |(e - 2)iE(2)]
k=1

and hence finds a better answer to the problem.

Theorem C If pp = O(1), then (8) holds for all f € {f : E.(f') = o(n‘é)},
Now in this paper we first intend to give the following two icmmas which improve the
estimates in Theorem A.

Lemma 1 For any matriz X: (a) lfgfg";lllnk“ = O(ngyé); (®) An = O(n%y"); (¢) v =
On¥un; (d) An = Olndpd).

Lemma 2 If y, = O(1), then (a) Ap = Q(n%’g); () vp = O(n%); (e) A = O(n%),
Based on this lemma one can deduce a better answer to the problem than before.

Theorem If u, = O(1), then (8) holds for all f € {f : En(f) = o(n™ 1)}.
2. Proofs

2.1 Proof of Lemma 1
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(a) In [3] the author gives an identity
2 (z~z)Au(2) = 2)_(z — =) li(2)
k=1 k=1
from which it follows that

3 (= - =) ii(2)
k=1

<2 = 2pn.

1
2

(= - z) (@) < 2|3 14n(a)
k=1 k=1

We intend to show a stronger estimate

2 1
max |l < 8nsps, n=1,2,---.

Suppose on the contrary that there exist numbers n and k,1 < k < n, such that
2 1
ltnkll > 8n3ps.
Choose z, € [—1,1] so that |[l,k(zn)| = [[[nk]]- It follows from (4) that
|zn — zi| < 471073,

By definition we obtain
. 4
[vi(za)| < 87305,

Let t, € [~1,1] satisfy |tp — zo| = 87 1n"2,
Noting that vi(z) is linear and vi(zx) = 1 we have

vi(tn) — vi(zn) _ vi(zi) — vi(2n) _ 1 - vi(z,)
tp — 2z Ty — Zp Tk — 2n

and hence 1
fve(tn)] = m[tn — zn + (1 — tn)vi(zn)].
Using the inequality
|zk — tn| < |2k — 2n| + |20 — ta] < 4% g ln2 <2 'n73,
one obtains by (5)-(7)
lve(tn)] > 4n3]87 1072 — (271~ 3)(8 20 %)| = 2p-t.

On the other hand, by the Markov’s inequality

Bta) = 1mm)+ /: [ (e)'de > (121 - 4(n = D43l tn — o
> i3l [1 - i‘{—”—] > I > 3208
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Thus |ve(ta){2(tn) > 15un, a contradiction
(b) The above conclusion implies

>
k=1
(c) By the Cauchy’s inequality we have
l

{i(z - Zi) 21,,(1:)}_ {
k=1

k=1

= O(n(ndud)?) = O(nd un).

= O(n%l‘n)'

n
> |z — zlli(z)
k=1

Up =

1

(d) The conclusion (b) implies A, = O(n3pus).
2.2 Proof of Lemma 2

(a) Let n be fixed and let Y 12(z,) = A, for z, € [-1,1]. Assume that ,0< 8 <1

is a fixed number which will be determined later. Since
- Z Ilzr.(zn):

2n > Y. (2 — zk) R (2a) 2 07
|zk—zk|2n_/9

|zk—zk|2n”ﬂ

we have
Z 13(2n)

|zx—ni|>2n—P

= O).

Denote by M,{K} the number of elements in the set K.
Here we must apply Theorem 3.4 in [2] which says that denoting by N,(an,fBs) the
number of 0, = arccoszpg in the interval [ap,B,] C [0, 7] one has

Na(ctn, Ba) = E%‘fﬁn + O(Inn - In(npn)).

Put
}, bp = max{-1, z, — n" P}, a, = arccosan, B, = arccosb

an =min{l, z, +n

Then using the inequality
. 8 1 1
0=nx-=(2) <7rsm-2—=7r[§(1—-cos0)]2, 0<0<nr
we obtain
Bn — an = arccosb, — arccosa,, = / (1—1t*)"2dt
2
1
< / (1-t¥)2dt = arccos|[l — (an — b,)]
1—(an—bn)
) < o(} 8
< arccos[l — 2n7*] < W{E[l - (1 -2n"%)]}2
_8
= wn”z,
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Thus
M,: = Mn{k . lzkn - znl < n—ﬂ} = Nn(an;ﬁn)
< w5240 n) = O(n'5).
Hence we get an estimate by Lemma 1

Y (20) = O(Man?) = O(n5™5).

|2k—2zn|<n—8
Thus 1 8
> B(zn) = O(n?) = O(n5773).

Taking 8 = %, one obtains an estimate A, = O(n%%).
(b) Using the same argument as the proof of Lemma 1(c) it is easy to get

Vp = O(n%)
(c) By the Cauchy’s inequality we have
1 1
n 2 n 2
(o) {30}
k=1 k=1
from which it follows by a similar argument as above that

> l(z) = O(n?+3),

Izk—anZn"ﬂ

= O(n%)

<

5 1(z - z)ie(@)]
k=1

where 3 |lg(2,)| = An. Similarly we can get another estimate

Y le(em)l = O(Mand) = Ofnd~

lzx—zal<n—B

8
]

).

Thus . . p e
Ao =Y [l(za)| = O(nF*3) + O(ns~7) = O(n1s)

if we take that g = I.

2.3 Proof of Theorem

Let P, be the best approximation of polynomial of degree < n — 1 to f. Then

|La(f,2) = f(@)| < |La(f,2) = La(Pa,z)| + [La(Pn, 2) = Pa(2)| + Pa(2) - /()]
|La(f = Pa,2)| + |Pa(=) — f(2)]
< Eama(£)(1+2a) = (1)

if Eq(f) = o(1).
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