An Adjoint Equivalence of the Category IS of Inverse-sheaves *

Yu Yongxi
(Dept. of Math., Shuzhou University, China)

We have obtained the category IS of $r(r \ge 0)$ -dimensional inverse-sheaves of open sets of R^n and the following

Theorem 1 Let $U: C^r \to IS$ be the forgetful functor. Then there is an adjoint equivalence $\langle IM, U; \eta, \in \rangle : IS \to C^r$.

Corollary 1 C^r -manifolds (X, ϕ) and (Y, ψ) are diffeomorphic iff $U(X, \phi)$ and $U(Y, \psi)$ are isomorphic.

Corollary 2 Any C^r-manifold is diffeomorphic to its manifold of type inverse-sheaf.

Corollary 3 For any inverse-sheaf $\langle F, \rho \rangle$ of open ses of \mathbb{R}^n on B_F , there is a \mathbb{C}^r -differential structure on B_F .

For any C^r -manifold (X, ϕ) , we have defined its weak-sheaf $[G_r^X, \rho]$ of groups.

Theorem 2 C^r -manifolds (X, ϕ) and (Y, ψ) are diffeomorphic iff $[G_r^F, \rho] = [G_r^Y, \rho']$. A presheaf satisfying (M) and (G') on B is called a weak-sheaf. Where B is a basis which is closed for non-empty open subsets.

^{*}Received Dec. 31 1992.